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Abstract 
To make accurate inferences about our 
multidimensional world, humans must distinguish 
observations of causal processes from spurious 
associations. We investigated the role of inductive 
biases in shaping memory around causal 
information, specifically testing for a semantic bias 
that leverages existing semantic structure to direct 
learning. Participants completed a predictive 
learning task in which both causal and spurious 
associations were observed. Results showed that 
spurious inferences were suppressed when the 
causal associations were defined within semantic 
categories, indicating that a semantic bias directed 
learning. Simulations of a feature-based successor 
features model further demonstrated that this bias 
should have a more dramatic benefit in more 
naturalistic environments, with high-dimensional 
states and deep causal processes. In all, this work 
demonstrates that inductive biases that act on 
multidimensional transition dynamics may be 
essential for learning in our complex world. 
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Introduction 
To make good decisions, humans must predict how our 
actions affect future events. This ability is supported by 
predictive memory representations that encode the 
statistical relationships between events (Momennejad, 
2020; Stachenfeld et al., 2017). However, learning 
useful representations is not straightforward given the 
complexity of real-world experience. Events comprise 
numerous features, whose many causal interactions 
determine how experience unfolds. These interactions 
may occur in parallel, creating ambiguity about which 
observations reflect causal versus spurious 
associations (Liljeholm, 2020). For example, say causal 
processes A1→A2 and B1→B2 co-occur ({A1, B1} → 
{A2, B2}; Figure 1), an observer will incidentally witness 
spurious transitions A1→B2 and B1→A2. These 
spurious associations may distort the learned predictive 
representation, leading to noisy inference about the 
outcomes of events comprising A1 or B1.  

When a set of features frequently co-occur, these 
distortive effects may do more than inject noise – they 
may tune learning to specific contexts. Spurious 
transitions in effect act as links between disparate 
causal processes. These links are reinforced as causal 
processes co-occur, binding features into common 
representations that reflect the context defined by the 
feature conjunctions (e.g., {A1, B1} → {A2, B2}) rather 
than the independent causal processes (e.g., A1→A2, 
B1→B2). Thus, multidimensional environments are 

inherently prone to noisy, warped representation.  
Inductive biases can direct learning to stable 

properties across contexts (Goyal & Bengio, 2022; 
Kemp & Tenenbaum, 2009).  The current work explores 
how inductive biases may thus direct predictive learning 
to context-independent causal processes. Specifically, 
we test for a semantic bias, whereby learning is molded 
towards the existing structure of semantic knowledge. 

  
Figure 1: Trial procedure. START→TERMINAL state 
transitions arise from feature-based causal transitions.  

Semantic bias shapes predictive learning 
One hundred participants completed a feature-based 
predictive learning task in which they made 
compositional inferences to earn reward (Figure 1). 
Stimuli were robot images, each comprising two 
features drawn from four semantic categories (heads, 
arms, bodies, antennas). Causal associations were 
defined between “start” and “terminal” features. On 
each trial, participants saw a “target” terminal item 
before a set of four start features. Their goal was to 
select two start features to compose an item that would 
produce the target. After choosing, the terminal item 
produced by the composition was shown, and a reward 
was paid based on the number of features that matched 
between the target and produced terminal items.  

To test for a semantic bias, participants were 
assigned to one of two between-subjects conditions. In 
the semantic congruent condition, causal transitions 
were defined within category (e.g., head1→head2). In 
the semantic incongruent condition, causal transitions 
were defined between categories (e.g., head1→arm2). 
A semantic bias could only apply in the congruent 
condition, potentially directing learning to causal over 
spurious transitions. To estimate each participant’s 
extent of causal and spurious learning, we fit a 
multinomial logistic model that quantified the influence 
of observed causal and spurious transitions on choice. 
Consistent with a semantic bias, causal versus spurious 
transitions influenced choice more in the semantic 
congruent condition (M = 0.875, SD = 0.358, 95% HDI 
= [0.187, 1.588]; Figure 2A). 

Next, we tested whether this bias reduced learning 
specificity. We had half the robots occur twice as often 
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as the others, with the expectation that high specificity 
learning should tune to frequent trials, diminishing 
reward earnings on infrequent trials. Supporting our 
hypothesis, reward earnings were more sensitive to trial 
frequency in the incongruent condition (M = 0.141, SD 
= 0.034, 95% HDI = [0.077, 0.208]; Figure 2B).  

Modelling learning in complex contexts 
While our task captured key aspects of 
multidimensional experience, it remained far simpler 
than real-world environments, which comprise higher-
dimensional events and deeper causal processes that 
unfold over extended durations. We therefore sought to 
understand how the observed semantic bias may affect 
learning in more naturalistic environments. 

Individual differences in predictive learning were 
characterized by fitting a feature-based successor 
features model (FBSF) to each participant’s data. The 
standard SF model is a predictive representation that 
encodes the quantity of future features expected to be 
encountered from a state (S→F’; (Carvalho et al., 2024; 
Dayan, 1993). To model learning fully at the level of 
features, FBSF instead encodes expectations for each 
feature (F→F’). Difference in bias were captured by a 
free parameter (bias = [0, 1]) that dictated the 
suppression of spurious information during learning. 

To verify that FBSF suitably captured learning, we 
compared it to three alternative models: (1) CBSF –
learned state transitions (S→S’); (2) CBSF sampler – 
CBSF with a retroactive integration mechanism for 
flexible inference; and (3) null – random choice. AIC-
based model selection found that most participants not 
best fit by the null model were best fit by FBSF (Figure 
2C). Moreover, verifying that FBSF in isolation 
explained behavior, the bias fit was associated with 
greater causal versus spurious transition influence (M = 
2.692, SD = 0.691, 95% HDI = [1.280, 4.012]; Figure 
2D) and reduced frequency sensitivity (M = -0.239, SD 

= 0.059, 95% HDI = [-0.349, -0.120]; Figure 2E). 
Finally, to extrapolate behavior to more naturalistic 

settings, we simulated the best fitting FBSF models in 
task environments varying in dimensionality (1, 2, or 4 
features per state) and causal depth (1-, 2-, 3-, or 4-
step). Models were trained to convergence, and then 
tested on trials with no feedback. Agents earned less 
reward in environments with greater dimensionality and 
depth (Figure 2F). However, high-bias agents exhibited 
a striking reduction in this impairment, highlighting the 
crucial role such inductive biases might have for 
predictive learning in real-world environments. 

Conclusion 
These results provide evidence for a semantic bias that 
molds predictive representations based on existing 
semantic knowledge. This bias suppressed spurious 
information, improving the accuracy of predictive 
inference, and limiting learning specificity. Formal 
modeling further demonstrated that these benefits scale 
with the dimensionality and causal depth of the 
environment. Thus, inductive biases that act on 
multidimensional transition dynamics may be crucial for 
effective predictive learning in complex everyday life. 
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Figure 2: Results. (A) Influence of causal versus spurious transitions on choice. (B)  Mean reward earnings by trial 
frequency and condition. (C) Model fits. (D) Transition influence on choice by bias fit. (E) Sensitivity of reward 
earning to trial frequency by bias fit. (F) Simulated FBSF reward earnings by environment depth and dimensionality. 
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