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Abstract 
We employed deep reinforcement learning to 

discover behavioral and neural strategies underlying 

a spectrum of performance on a risky decision- 

making task. Working backwards, we identified 

analogous behavior from a large cohort of 

neurosurgical patients from whom we recorded 

single neuron activity in decision making circuits. 

Examining low dimensional factors in neuron 

population activity uncovered temporal and trial 

factors differentiating task performance groups, with 

improved task performance being associated with 

more nonlinear neural representations of reward 

prediction.  
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The Balloon Analog Risk Task (BART) is an ecologically 

valid decision-making task that models risk taking and 

impulsivity behavior (Lejuez et al., 2002). Despite BART’s 

widespread use as a psychophysical paradigm, 

behavioral strategies and optimal performance are 

opaque (Schonberg et al., 2011). Here, we address this 

knowledge gap by training deep reinforcement learning 

agents on BART to gain insight into the diversity of neural 

and behavioral representations that underlie BART 

behavior. We sought to use this information to better 

understand how human BART participants may be 

understanding the task and how these internal 

representations may be impacting their performance. 

Clustering neural representations in agents revealed a 

spectrum of task strategies and neural representations 

related to risk that were subsequently uncovered in 

human neural representations.  

Methods 

BART participants were instructed to maximize the points 

earned throughout their session. Points were rewarded 

based on the size of the balloon when inflation ceases 

and receive no points if the balloon pops. In the version of 

BART that the humans completed, balloons are colored 

either gray, red, orange or yellow. The color of balloon, 

and the presence/absence of an indicator of a  passive 

trial, cued patients to the potential for reward on each trial.  

There were five reward categories of balloons: gray 

(unrewarded passive trials), yellow, orange, red  

Figure 1: Actor-critic 

network behavior and 

representations. A) 

proportions of specific 

node types each type 

of agent had. Circles 

are means, each line is 

an individual agent. B) 

example of bimodal 

behavior. C) example 

of explorer behavior. D) 

left: Mean inflation time 

(IT), right: total score. 

E) PC1 activity for a 

bimodal agent (left) 

and not (right) across 

evaluation episodes.  

 

(increasingly risky active trials – red balloons popped at 

the smallest size, yellow the largest) and yellow, orange 

or red balloons with a passive trial indicator which are 

represented as pink (rewarded passive trials).  

Actor-Critic agents (a feed-forward layer 

connected to a RNN layer, and then split into actor and 

critic feed-forward layers, where each layer has N = 64 

nodes) were trained on a variation of BART using a 

standard proximal policy optimization (PPO; Schulman et 

al., 2017). In this version of BART, for 50 consecutive 

balloons a mean balloon size, µ, was drawn uniformly 

between 0.2 and 1 and each balloon’s maximum size 

drawn from N(µ,.05). Observations vectors were formed 

by the size of the balloon, the previous action and the 

previous reward while actions were drawn from policy 

outputs stochastically. Activity of the recurrent layer 

nodes was clustered using k-means (k=6 was selected as 

optimal after analysis comparing k’s between [3, 21]). 

Next, the agents were clustered using k-means (k=3) 

based on the proportions of their recurrent layer nodes 

that fit into each of the six categories. Agents were 

classified as having bimodal behavior if any gap of mean 

IT between two consecutive µ conditions exceeded 0.15.  

To meet the qualifications of an explorer, an exponentially 

weighted moving average of balloon ITs must increase by 

0.2 over the course of an episode. The time steps from 

the evaluative periods were concatenated into one matrix 

and Principal Component Analysis (PCA) was done. PC1 

was then split back into vectors for the different µ 

conditions.  



Single neuron activity was recorded from patients 

undergoing neuromonitoring for treatment of drug-

resistant epilepsy using Behnke-Fried microwires (Misra 

et al., 2014). Single units were isolated by bandpass 

filtering between 0.25 and 7.5 kHz and sorting waveforms 

that crossed -3.5 times the root mean squared of the 

filtered signal using Offline Sorter (Plexon, Inc.; Dallas, 

TX). Humans were considered to use a bimodal strategy 

if the difference between the mean red and orange ITs 

was either three times greater or smaller than the 

difference between the mean orange and yellow ITs. To 

categorize participants as using an explorer strategy, a 

moving average of inflation durations was taken for each 

patient and each balloon color. If the final average was 

inflated for a longer duration than the first average and all 

other average values were neither inflated 20% longer 

than the final average nor 20% shorter than the first 

average, these patients were considered explorers. Cue-

aligned firing rate data was loaded into a three-

dimensional tensor (neurons x time x trials). Tensor 

Component Analysis (TCA) was used to find low 

dimensional, demixed factors from human neuron 

pseudoensembles from each behavioral strategy 

(Williams et al., 2018). Numbers of tensor components 

were pared down using the prescribed method of finding 

inflection points in TCA model error.  

Results 

Agent Results: Based on distributions of node activity 

clusters, agents were classified into three types, 1) 

bimodal (55%), 2) neither (30%) and 3) explorers (15%; 

Fig. 1A). Figures 1B and 1C show exemplary bimodal and 

explorer strategies, respectively. Digital agents using a 

bimodal strategy scored significantly higher compared to 

the other two strategies. They also had significantly longer 

inflation times than the other two groups (Fig. 1D). When 

PC1 is plotted for different µ, a clearly bimodal, divergent 

trajectory appeared (Fig 1E), whereas explorers encoded 

expected balloon size more linearly. This analysis showed 

a clear link between the RNN’s representation of the task 

and the agent’s performance.  

Human Results: Forty-two human participants 

completed 45 sessions of BART with a mean±s.d. of 

236.1± 25.9 trials of BART with a mean±s.d accuracy of 

81.9%±6.9%. We recorded from 576 well-isolated units 

which were grouped into four anatomical areas: The 

Orbitofrontal Cortex (117 units), The Medial Frontal 

Cortex (54 units), the Anterior Cingulate Cortex (131 

units), and the Mesial Temporal Lobe (274 units). 

Human behavior clustered similarly to agent 

behavior (Bimodal: 57.8%, Neither 33.3% and Explorer: 

8.9%), with bimodal humans achieving significantly higher 

scores and inflation times compared to the two other 

behavioral groups (Fig. 2A). Moreover, low dimensional 

factors of  pseudoensemble activity in bimodal patients 

(Fig 2C) showed curvilinear representations across trial-

averaged firing rate data in contrast to the more linear 

representations in explorer patients. The parabolic shape 

of the trial factors (Fig 2C, right) is consistent with a 

canonical representation of risk. Additionally, when we 

included all units from all patients, the factor upon which 

explorer units loaded negatively, also exhibited an 

increase in the time domain. These bimodal 

representations also appear to group the trials by risk 

category better than the explorers. 

Here, we gained insight into the neural 

underpinnings of risky decisions using actor-critic 

networks, finding similar behavior and neural 

representations in human decision-making circuits. We 

found that in both humans and agents, more nonlinear 

encoding of reward probability resulted in improved task 

performance. 

 

Figure 2: Human behavior 

and representation. A) 

Total score and IT boxplots 

for each bhavior category. 

B) Two of four TCA factors 

for cue-aligned firing rates 

for all units recorded from 

human explorers. C) Same 

as B but from bimodal 

humans. D) Two factor 

TCA for all units in cue-

aligned trial averaged 

tensor. Neurons are 

pseudocolored by 

behavioral category. Note 

that green explorer units 

load negatively onto the 

second factor, the time 

factor mirrors the bimodal 

factor and the trial factor 

exhibits quadratic reward 

probability representation, 

i.e., risk. 
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