
Parametric control along the encoding axes of IT neurons uncovers 
hidden differences in model-brain alignment 

 
Jacob S. Prince (jprince@g.harvard.edu) 

Dept. of Psychology, Harvard University, Cambridge, USA 
 

Binxu Wang (binxu_wang@g.harvard.edu) 
Kempner Institute, Harvard University, Cambridge, USA 

 
Akshay V. Jagadeesh (Akshay_Jagadeesh@hms.harvard.edu) 

Harvard Medical School, Boston, USA 
 

Thomas Fel (tfel@g.harvard.edu) 
Kempner Institute, Harvard University, Cambridge, USA 

 
Emily Lo (emily282lo@gmail.com) 

Dept. of Psychology, Harvard University, Cambridge, USA 
 

George A. Alvarez (alvarez@wjh.harvard.edu) 
Dept. of Psychology, Harvard University, Cambridge, USA 

 
Margaret S. Livingstone (margaret_livingstone@hms.harvard.edu) 

Harvard Medical School, Boston, USA 
 

Talia Konkle (talia_konkle@harvard.edu) 
Dept. of Psychology, Harvard University, Cambridge, USA 

 
 
 



Abstract: 
As model-brain alignment scores increasingly 
saturate under current assessment methods, new 
approaches are needed to test whether there are 
actually hidden differences in how well models 
capture biological feature tuning. To this end, we 
introduce a paradigm for comparing deep encoding 
models based on their ability to control neural 
responses along their hypothesized encoding axes. 
Using recordings from macaque inferotemporal 
cortex, we compared two DNN-based encoding 
models: a standard ResNet-50 and an adversarially 
robust variant.  These models achieved comparable 
performance in predicting neural responses over a 
wide range of natural images. However, we found 
they differed substantially when subjected to a test 
of “parametric control.” Leveraging an explainable 
AI technique called feature accentuation, we 
synthesized image sets that varied systematically 
in precise intervals along each encoding axis, 
based on the hierarchical computations of each 
model. We found that accentuated stimuli from the 
robust model achieved superior control of neural 
firing. We then synthesized “controversial” stimuli 
that further validated the brain alignment of RN50-
robust over the baseline model. Our framework 
offers a new means to arbitrate between models, 
requiring a more precise characterization of feature 
tuning in targeted local regions of image space. 
 

Introduction 
Popular neural encoding benchmarks such as 

BrainScore have increasingly saturated, with recent 
surveys showing that hundreds of models are capable 
of scoring within Pearson r = 0.1 of each other in 
prediction of responses in high-level visual cortex, 
despite major differences in architectures and training 
objectives (Schrimpf et al. 2018; Conwell et al., 2024). 
Are these models truly learning equivalent 
representations, or might they rely on different feature 
tuning and different underlying computational 
mechanisms, some of which are more brain-aligned 
than others? Recent evidence suggests that models 
can achieve high predictivity despite containing 
misaligned features (Prince et al., 2024), due to the 
inherent flexibility of popular encoding procedures such 
as ridge regression. More rigorous procedures for 
evaluating these models are needed.  

Here we introduce parametric neural control as a 
more stringent test of brain alignment. In this paradigm, 
given a linear encoding model fit from a DNN layer to a 
particular recording site (an “encoding axis”), we use 
feature accentuation (Hamblin, Fel, et al., 2024) to 
systematically manipulate a set of natural images along 
that axis. This process creates “accentuated” image 
sweeps, expected to systematically modulate neural 
responses in incremental steps either above or below 
the response of the original seed image. If the encoded 
features truly align with the brain’s feature tuning, neural 



responses should show a clear, graded pattern that 
tracks these manipulations. This closed-loop method 
directly tests whether high encoding performance on 
natural images actually translates into meaningful brain 
alignment, through a stringent generalization test that 
forces the model to generalize to stimuli that arise from 
targeted local perturbations along the image manifold.  

Results 
We recorded responses to images from the Natural 

Scenes Dataset (NSD; Allen et al., 2022) in face 
patches in IT cortex of two macaques using floating 
microelectrode arrays, and conducted a focused case 
study of encoding models derived from a standard 
ResNet-50 (RN50) and an adversarially robust variant 
(RN50-robust). For each neural site, we first fit encoding 
models using responses to 800 natural images from the 
COCO dataset. Many neural sites achieved nearly 
identical encoding R² on held-out NSD images.  We 
identified the five most reliable sites for the next 
analyses, exploring whether the seemingly equivalent 
encoding models from the RN50 and RN50-robust 
backbones were actually equal when required to control 
neural responses along their encoding axes, using 
stimuli that span targeted local regions of image space.  

To test this, we selected 10 seed COCO images, 
and generated a sweep of 11 accentuated stimuli per 
image predicted to either enhance, maintain, or 
suppress the neural sites’ responses. Critically, the 
feature accentuation method accepts a seed image as 
input, and creates local image perturbations related to 
the gradients of the model along the encoding axis—in 
this way, it implements a stronger test of how the model 
hierarchically computes that particular tuning axis (Fig 
1a).  Image sweeps were created along both the RN50 
and RN50-robust tuning axes, and presented to the 
monkey the subsequent day. We found that RN50-
robust-derived stimuli elicited reliable, graded 
modulation of firing (mean r over seed images = 0.855 
+/- 0.055 SD over k = 5 channels), whereas RN50-
derived stimuli showed weaker control (mean r = 0.470 
+/- 0.116; Fig 1c). Qualitative inspection suggests that 
RN50-robust encodings emphasized cohesive face 
contours, while RN50 relied more on local textural 
features such as hair and fur (Fig 1b).  

To further reveal these differences, we synthesized 
“controversial stimuli” (Golan et al., 2020), which one 
model predicted would elicit high firing while the other 
predicted suppression. In empirical testing, only RN50-
robust’s predictions positively correlated with recorded 
responses, providing further validation of the features 
that are unique to that model. Together, these results 
hint that adversarial training may encourage more IT-
aligned high-level feature tuning by pressuring toward 
more robust, globally coherent visual feature 
representations (see also Feather et al., 2023). 

To assess the generality of these findings, we 
replicated both of these experiments in a second 

monkey and found consistent results. The same 
dissociation between global-predictivity and local-
control emerged: while both models achieved similar 
encoding R² scores over a diverse set of natural 
images, RN50-robust-derived stimuli exhibited superior 
neural control within local regions of image space 
compared to RN50-derived stimuli (main control 
experiment: mean r = 0.711 +/- 0.123 over 5 channels 
for RN50-robust; mean r = 0.308 +/- 0.189 for baseline 
RN50). These results reveal that while models may 
have a similar ability to predict neural responses when 
assessed over a wide span of natural images, they can 
be clearly dissociated in their commitments to the 
feature tuning using accentuated stimulus sets. 

Discussion 
This parametric control paradigm provides a 

stringent test of model-brain alignment by directly 
testing the generalization of each model using stimulus 
sets that span targeted local regions of image space, in 
the precise directions that are predicted to exert the 
greatest influence over neural firing. We find that 
models with similar ability to predict neural responses 
over a wide span of natural images can be clearly 
dissociated using model-derived stimuli that make 
these feature preferences explicit.  

Our approach shares some similarities with prior 
encoding-based neural control studies (Bashivan et al., 
2019; Tuckute et al. 2024). Unlike approaches using 
diffusion models or generative priors (Ponce et al. 
2019; Luo et al. 2024; Cerdas et al., 2024), our method 
relies only on the encoding model itself, performing 
sweeps of targeted perturbations along specific feature 
dimensions, without introducing unrelated priors or 
biases. The key innovation here is that these image 
perturbations leverage the full computational graph of 
the encoding model, testing not just what features 
matter but how they are computed hierarchically. 
Importantly, even in research scenarios where closed-
loop experiments are not possible, feature accentuation 
can provide a useful new way to visualize and compare 
the features that different encoding models exploit.  

Ongoing work is extending these experiments to 
larger model groups to understand which design 
principles are most important for achieving 
precise neural control. Further, manipulating aspects of 
the mapping scheme—such as the feature basis (e.g. 
PCA, sparse random projections, sparse autoencoders) 
and regularization of encoding weights (e.g. Ridge, 
Lasso, sparse-positive)—will help reveal how these 
technical choices influence control scores. 

Overall, these findings emphasize the importance 
of looking beyond traditional encoding metrics 
to evaluate mechanistic alignment between DNNs and 
brains (see also Feather et al., 2025), highlighting 
precise feature tuning alignment as a crucial dimension 
of model evaluation. 
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