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Abstract 

The brain can automatically track global information, 
yet the underlying mechanisms remain under debate. 
Although global processing, particularly of high-level 
structural regularities, is commonly associated with 
late components such as the N400, its temporal 
dynamics are not well understood. In this study, we 
employed a hierarchical roving oddball paradigm to 
manipulate global predictability while controlling for 
physical features and overall stimulus probability. 
EEG signals were collected while participants were 
passively presented with auditory inputs. ERP 
analysis revealed canonical MMN and P300 
components. To investigate the temporal evolution of 
global encoding, we trained a time-resolved linear 
discriminant analysis to decode global predictability 
across time points. The resulting temporal 
generalization matrix showed significant cross-
temporal decoding from 50 to 500 ms post-stimulus, 
indicating a temporally stable neural representation of 
global predictability. These findings suggest that the 
brain encodes global regularities in a sustained and 
temporally generalized manner, even in the absence 
of attention. 
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Introduction 

Auditory information unfolds over time, with local 
details progressively integrated into global structures. 
Correspondingly, the auditory system exhibits 
remarkable perceptual intelligence, particularly its 
ability to automatically track and integrate global 
regularities (Näätänen et al., 2010; Näätänen et al., 
2001). Despite extensive research, the neural 
mechanisms underlying global encoding remain a 
topic of debate. Classical local-global paradigms 
implicate components such as mismatch negativity 
(MMN) (Recasens et al., 2014) and N400 (Liaukovich 
et al., 2022) in global processing, while findings 
based on temporal averaging suggest that early 
responses like N1 may also reflect integration of 
information over longer timescales (~5 s) (Regev et 

al., 2021). However, the temporal evolution of global 
encoding remains poorly understood. 

To address this, we employed a hierarchical roving 
oddball paradigm and recorded EEG while 
participants passively listened to auditory sequences. 
We first identified classical ERP components, 
including MMN and P300. Next, we trained a linear 
discriminant analysis (LDA) classifier to decode 
global predictability and applied temporal 
generalization analysis to track the stability of global 
representations over time. This approach allowed us 
to characterize the dynamic trajectory of global 
encoding in the absence of attention. 

Method 

Participants (N=27) took part in the experiment, who 
were instructed to focus on watching a movie while 
ignoring the auditory stimuli presented. The 
hierarchical roving oddball paradigm consists of two 
levels. The local level involved auditory stimuli with 
repetitions ranging from 2 to 8, forming a stimulus 
cycle. Two pure-tone stimuli, 500 Hz (denoted as A) 
and 1000 Hz (denoted as B), alternate in varying 
repetition counts. The global level manipulated the 
repetition counts within each cycle into either ordered 
increasing sequences (predictable, e.g., 2:8) or 
random sequences (unpredictable, with random 
repetition counts) (see Fig. 1). This design ensures 
equal overall probabilities for A and B stimuli. 
Stimulus delivery was controlled using Psychtoolbox 
3.0.19 (Kleiner et al., 2007). 

EEG signals were recorded using a 64-channel 
Biosemi ActiveTwo system (Biosemi B.V., 
Amsterdam). All steps concerning preprocessing 
were conducted using MATLAB (version 2019a; 
MathWorks). The signals were re-referenced, band-
pass filtered, downsampled, epoched, and baseline 
corrected. Artifacts were identified and removed 
using Independent Component Analysis (ICA) in 
EEGLAB. Additionally, any epochs containing 
artifacts exceeding ±100 μV were excluded. 

We began by computing ERP difference waves, 
followed by extracting mean amplitudes within ±20 
ms around the MMN and P300 peaks. These values 
were entered into regression analyses with global 
predictability as a predictor. Next, LDA classifiers 
were trained at each time point to decode global 
regularities. Temporal generalization analysis was 



applied to the global classifier, yielding a temporal 
generalization matrix of decoding accuracy. 

Figure 1. Schematic illustration of the hierarchical 
roving oddball paradigm. 

Results 

ERP  
ERP responses at each stimulus position revealed 
that deviant stimuli (Position 1) elicited significant 
MMN and P300 components under both global 
conditions, as indicated by the topographical maps. 
However, regression analysis controlling for trial 
count consistency showed that neither MMN nor 
P300 amplitudes reliably indexed the global effect. 
These findings suggest that traditional ERP 
measures may lack sensitivity to capture global 
predictability effects. 

Figure 2. ERP waveforms and topographies of MMN 
and P300. Notably, the deviant stimulus at Position 1 
evoked a distinct waveform compared to the repeated 
standard stimuli. Subtracting standard from deviant 
responses yielded classical MMN and P300 
components, as illustrated in the topographical maps. 

LDA decoding 

The LDA-based global classifier revealed a prominent 
decoding peak around the classical MMN time 
window (~110 ms). Temporal generalization analysis 

further showed significant cross-temporal 
generalization between 50 and 500 ms post-stimulus, 
indicating the presence of a sustained and stable 
neural representation of global predictability. 

Figure 3. Temporal generalization decoding matrix. 
Contour lines indicate time regions where decoding 
accuracy significantly exceeded chance, with black 
and red lines marking FDR-corrected thresholds of 
0.05 and 0.01, respectively. 

Discussion 

Taken together, our findings reveal a stable neural 
representation of global predictability from 50 to 500 
ms post-stimulus, reconciling previous 
inconsistencies in the literature. The peak decoding 
accuracy coincided with the MMN window, providing 
cross-method validation of our results. By controlling 
physical properties and stimulus probabilities, our 
paradigm isolates global structural predictability as 
the primary driver of the observed neural effects. This 
demonstrates the brain's ability to track higher-order 
regularities over extended timescales (up to 20 
seconds), even during passive listening. 
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