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Abstract
Human scene understanding dynamically evolves over
the course of sequential viewing fixations from a gist-
level understanding to a more detailed comprehension of
the scene. Each fixation provides rich visual information
about objects and their spatial relationships. To model
this incremental process, we introduce Seen2Scene, a
framework for modeling human scene understanding by
controlling the inputs used to generate a visual hypoth-
esis of the scene. Seen2Scene uses a self-supervised
encoder to extract features from fixated scene regions,
which guide a pre-trained text-to-image latent diffusion
model through a modular adapter framework. As fixations
accumulate, the model iteratively refines its visual hy-
potheses, filling in unseen areas with contextually plau-
sible content. We evaluated Seen2Scene on COCO-
FreeView using two experimental conditions: fixation-
only conditioning to isolate the contribution of foveal in-
formation, and fixation+gist conditioning to examine how
non-fixated scene information integrates with foveal de-
tails. Results show that initial fixations drive the great-
est gains in semantic and perceptual fidelity and that the
fixation+gist condition reached high-fidelity scene under-
standing with the fewest fixations, thus demonstrating
the importance of integrating peripheral gist information
with visual details collected foveally.
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Introduction
Our understanding of a visual scene evolves as new informa-
tion is sampled with each fixation during viewing. The infor-
mation accumulated incrementally refines a visual hypothesis
of what exists in non-fixated regions of the scene (Malcolm et
al., 2014). Scene understanding begins with the first fixation,
which extracts sufficient information to create a gist level rep-
resentation (Potter, 1975) that includes the scene’s category
and spatial layout. This gist representation is largely obtained
from peripheral vision (Stewart et al., 2020) but remains im-
precise and can correspond to many more specific scene in-
terpretations.

Our work focuses on the post-gist level of scene under-
standing that incrementally evolves as people sequentially
make fixations while viewing a scene. This aim requires dis-
tinguishing between the high-resolution information encoded
from each fixation and the gist-enabling information from pe-
ripheral vision. To visually model this dynamic evolution of
human scene understanding, we leverage recent advances
in latent denoising diffusion models (Rombach et al., 2022).
We introduce Seen2Scene, a novel modular latent diffu-
sion framework for modeling scene understanding fixation-
by-fixation (Figure 1A). Seen2Scene generates complete
scenes from a variable number of fixation features. Its modu-
lar architecture allows conditioning on any visual information,
including foveal features, peripheral gist, or other visual repre-
sentations. We treat these generations as visualized hypothe-

ses for the scene understanding gleaned by a human making
these fixations.

We evaluated Seen2Scene in computational experiments
and made a fixation-by-fixation assessment of the fidelity of
the model’s generated images to the original scenes using
a behavioral dataset of free-viewing fixations. In one exper-
iment, we use only foveal information from fixated samples.
In a second, we add peripheral gist information to investigate
their combined contribution to scene understanding.

The key contributions of this work are as follows:

• We used DINOv2 embeddings to quantify the information
that humans encode when viewing an image.

• Leveraging Seen2Scene, we generate visual hypotheses
of scenes from this information.

Methods
Seen2Scene models incremental scene understanding by
leveraging DINOv2’s spatially-grounded visual representa-
tions within a latent diffusion image generation framework. DI-
NOv2 provides multiple types of embeddings: patch tokens
that capture local spatial information in a grid covering the in-
put image and global tokens (CLS and register tokens) that
capture broader contextual features (Darcet et al., 2024). This
multi-scale structure aligns with human vision; patch tokens
correspond to detailed foveal information and global tokens
capture gist information from peripheral vision.
Seen2Scene builds on Stable Diffusion by replacing its

text conditioning with DINOv2 visual embeddings through the
UNet’s cross-attention mechanism (H. Ye et al., 2023; Z. Ye
et al., 2025). We utilized this architecture to build two vari-
ants of our model corresponding to our experiments. The first
variant uses a single cross-attention mechanism that condi-
tions on patch tokens from fixated regions (fixation-only) for
scene completion. The second variant employs two separate
cross-attention mechanisms: one for foveal information (patch
tokens) and another for gist information (CLS and register to-
kens), which we call fixation+gist. This dual-condition design
allows us to investigate how foveal and peripheral gist infor-
mation jointly contribute to scene understanding. During infer-
ence, both variants generate complete scenes by denoising
random noise conditioned on the visual embeddings from fix-
ated regions, with the number of available fixations incremen-
tally increasing to model progressive scene understanding.

To evaluate Seen2Scene we used COCO-FreeView’s val-
idation set (Yang et al., 2023), which contains approximately
82K fixations from a 5-second free-viewing task where par-
ticipants viewed images with memory instructions. Fixations
are accumulated sequentially, with each new fixation adding a
new token to the set to model progressive scene understand-
ing. We evaluate generation fidelity using CLIP image score
(Ge et al., 2024), which assesses text-based semantic align-
ment, and DreamSim (Fu et al., 2023), which is a powerful
method that estimates human similarity judgments gathered
on an ABX task using fine-tuned CLIP, OpenCLIP (Ilharco et
al., 2021), and DINOv1 (Caron et al., 2021) features.
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Figure 1: A: Seen2Scene architecture. B: Fixation-only outputs with fixations as red dots on COCO-FreeView images.
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Figure 2: Image generation fidelity on the COCO-FreeView
validation set improves with fixation count. The fixation-only
model (blue dots) uses only fixation tokens (Exp 1), while the
fixation+gist model (red dots) uses both fixation and gist to-
kens (Exp 2). We report CLIP and DreamSim scores. (A)
CLIP similarity is positively correlated with fixation count for
the fixation-only model (R = 0.28, p < 0.05). Fixation+gist
shows weaker correlation (R = 0.06, p < 0.05) but achieves
near-ceiling performance. (B) DreamSim distance shows neg-
ative correlations for both fixation-only (R =−0.43, p < 0.05)
and fixation+gist (R =−0.19, p < 0.05). Both Seen2Scene
models outperform the SDv1.5 variants, inpainting (with and
without COCO captions) and caption-to-image generation.

Results

Experiment 1: Scene generations conditioned on fix-
ations. Figure 1B shows images generated incrementally
(top to bottom) as fixations are added to Seen2Scene. For
each of four scenes, the original is shown on the left with be-
havioral fixations superimposed (red dots) and the generated
scene is on the right. Note that increasing the number of fix-
ations yields generations that are more perceptually and se-
mantically aligned with the original. As shown in Figure 2, a
fixation-only version of Seen2Scene (blue) shows steepest
gains in the first 3–4 fixations, with performance plateauing
thereafter. We observed this logistic relationship between fi-
delity gains and the number of fixation tokens in both CLIP
(Fig. 2A) and DreamSim (Fig. 2B) similarity scores.

Experiment 2: Scene generations conditioned on
fixation+gist information. The fixation+gist version of
Seen2Scene (Fig. 2, red), aimed at better isolating the role
of peripheral vision in scene understanding, showed weaker
correlations with increasing numbers of fixations. However,
this was largely due to the model achieving near-ceiling per-
formance with information from only the single central fixation,
a pattern aligned with the perspective that gist information pro-
vides a strong foundational understanding of scene structure
that requires fewer additional fixations to refine.

Comparisons to SDv1.5 baseline model variants. Both
Seen2Scene variants outperformed all SDv1.5 baselines,
with inpainting+captions and caption-to-image being the clos-
est competitors. Inpainting alone performed very poorly. This
stratification of performance demonstrates the benefit of com-
bining both visual and language information, which is partic-
ularly evidenced by the performance gap between inpainting
with and without captions. Notably, Seen2Scene achieves
its superior semantic understanding using only visual fixation
inputs devoid of textual descriptions.

Discussion & Future Work
Seen2Scene demonstrates that visual features alone can
drive a complex scene understanding, which we quantify
through scene generation. Our fixation-only model success-
fully completed non-fixated regions with plausible objects over
the first few fixations of viewing, and the fixation+gist variant
showed that this already-rapid scene understanding can be
further accelerated with the addition of global context. The fix-
ation+gist model’s near-ceiling performance with minimal fix-
ations reinforces the belief that peripheral gist provides strong
foundational understanding, reducing the burden of reasoning
about non-fixated content. In contrast, the fixation-only model
must incrementally obtain foveal samples until it is possible to
infer plausible completions from sparse local information.

In future work, we will conduct behavioral evaluations in-
vestigating the confusability between generated scenes with
originals using gaze-contingent change detection tasks and
same/different memory tests. We will do this to identify scene
generations that are perceptual and memory metamers for the
latent representations of scenes by humans.
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