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Abstract
Evidence accumulation models have become the dom-
inant theory in explaining neural and behavioral con-
structs of decision-making. The main principle of these
models is that a decision-maker accumulates noisy ev-
idence until a constant threshold is reached. However,
several behavioral and neuroscientific findings, besides
some theoretical motivations like optimality, have led
to alternative proposals, such as “collapsing threshold”
models. Usually, these models offer a more accurate fit to
empirical data. However, a major issue with these mod-
els is the unreliability of parameter estimation. Due to
this, researchers have relied solely on model fit compar-
isons, avoiding interpretation of the parameter values –
leading to controversial findings in the literature that sup-
port these models. This work introduces a reliable model
estimation framework by linking the non-decision time to
external measurements. In this modeling framework, we
consider a joint likelihood function for behavioral mea-
surements and the non-decision time measurement, con-
straining the non-decision time estimation. The results
of a parameter recovery study showed that the proposed
joint model makes the collapsing threshold parameters
identifiable.
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Introduction
Collapsing threshold diffusion models (CT-DDM) are a class
of diffusion decision models (DDM; Ratcliff, 1978) in which
the decision threshold can vary as time passes. These mod-
els have several key advantages over fixed threshold diffusion
models, such as predicting Gaussian-like response time (RT)
distributions (Evans & Hawkins, 2019; Hawkins et al., 2015),
providing a normative optimal decision policy (Fudenberg et
al., 2018; Frazier & Yu, 2007; Drugowitsch et al., 2012; Tajima
et al., 2016), and consistency with neuroscience findings on
urgency (Thura et al., 2012; Cisek et al., 2009; Murphy et al.,
2016). The evidence accumulation process in this model can
be represented by a Wiener process as follows:

dX(t) = δdt + sdW (t), bl(0)< X(0) = x0 < bu(0), (1)

where X(t) represents the accumulated evidence until time t,
δ is the mean evidence accumulation rate (drift rate), s is the
diffusion coefficient, x0 is the starting point bias (also known

as a priori bias), and dW (t) is the Wiener process. The pro-
cess starts the accumulation from x0 and continues until the
accumulator crosses either the upper (bu(t)) or lower (bl(t))
threshold (i.e., X(t) ≥ bu(t) or X(t) ≤ bl(t)). These mech-
anisms are a part of the decision process and predict deci-
sion time. However, RT also contains some components un-
related to the decision process, such as perceptual encoding
and motor execution. To exclude the effect of these compo-
nents from RT, DDM also contains a non-decision time pa-
rameter (τ), which is assumed to correspond to the duration
of all decision-unrelated processes.

Despite all the theoretical benefits of collapsing threshold
diffusion models, several systematic assessments employing
various parameter estimation methods (see Hadian Rasanan
et al., 2023, for a discussion on various estimation methods)
reported poor parameter recovery for these models (Evans et
al., 2020; Murrow & Holmes, 2024). However, an accurate pa-
rameter recovery is essential for interpreting the parameters
of a cognitive model. This situation complicates the interpre-
tation of the model’s parameters.

A potential approach for improving the parameter recovery
is to employ joint modeling. In other words, linking the model’s
parameters to additional observations adds constraints to the
model’s parameters and, as a result, makes them identifiable
(Nunez et al., 2025; Ghaderi-Kangavari et al., 2023). Tradi-
tionally, we only use RT and choice data to fit DDM and esti-
mate the parameters. However, in this model, we constrain the
non-decision time parameter using an additional data source
related to non-decision time. This additional data is a trial-
level noisy estimation of non-decision time, and we assume
that the true non-decision (τ) is the mean value of these ob-
servations. Therefore, for each trial, we have a measurement
of RTn, Choicen, and non-decision time (Zn) as follows:

RTn,Choicen ∼ CT-DDM
(
δ,x0,bu(t),bl(t),τ

)
,

log(Zn)∼ N (µ,σ2).

We considered a log-normal distribution with parameters µ
and σ for non-decision time observation because the non-
decision time is a positively valued random variable with a
right-skewed distribution, and neuroimaging studies showed
that it is approximately distributed log-normally (Weindel et al.,
2021). As mentioned before, we assume that the true non-
decision time (τ) is the mean value of the distribution, which
implies τ = exp(µ+σ2/2) or equivalently µ = log(τ)− σ2

2 . A
potential way of estimating the non-decision time at the trial



level is to extract it from neural signal data (e.g., Weindel et
al., 2024; Nunez et al., 2019; Weindel et al., 2021).

Simulation procedure
We conducted a parameter recovery study based on 1000
simulation data sets to test whether we can estimate the pa-
rameters of the joint model reliably. We considered two differ-
ent dynamics for the threshold, the hyperbolic and the expo-
nential functions, as follows:

bu(t) = θ× exp(−λt), or bu(t) =
θ

1+λt
,

where θ is the starting threshold (i.e., bu(0) = θ) and λ > 0 is
the decay rate. bu(t) stands for the upper threshold, and the
lower threshold is equal to the reflection of the upper thresh-
old (i.e., bl(t) = −bu(t)). In all simulations, we assumed that
the accumulation process starts from zero (i.e., starting point
x0 = 0). Also, we set the diffusion coefficient equal to one
(i.e., s = 1). To simulate RT and choice, we considered the
discrete form of the accumulation process (1) with a time step
∆t = 0.001. To cover a wide range of model behavior in the
simulations, we considered the following distributions for the
model parameters: θ ∼ U[1.5,4], λ ∼ U[0.1,2], δ ∼ U[0,3],
τ ∼ U[0.05,1], and σ ∼ U[0.1,1].

After generating 1000 random parameter sets from the
above distributions, we generated RT, choice, and noisy non-
decision time observation for 500 trials. As mentioned, we
assumed that the non-decision time is the mean value of a
log-normal distribution. Then, the location parameter of the
log-normal distribution is obtained by µ = log(τ)− σ2

2 . There-
fore, in each trial, we sampled a noisy observation of non-
decision time using the following log-normal distribution (i.e.,
log(Zn) ∼ N (log(τ)− σ2

2 ,σ2)). To compare the quality of
parameter recovery with the pure behavioral model (the No-
constraint model), we conducted the same simulation study
for CT-DDM without informing the model of non-decision time
observations.

We used the integral equation method to approximate the
likelihood function of the collapsing threshold diffusion model
Smith & Ratcliff (2022); Smith (2000). Also, we have em-
ployed the differential evolution optimization routine to mini-
mize the joint negative log-likelihood. To evaluate the preci-
sion of parameter recovery, we employed the r-squared in-

dex R2 = 1− ∑
N
i=1(ϑi−ϑ̂i)

2

∑
N
i=1(ϑi−ϑ̄)2 , in which ϑ and ϑ̂ stand for the true

generating parameter and estimated parameter, respectively.
Also, ϑ̄ shows the mean of the true parameter.

Simulation results
Figure 1 illustrates the r-squared values for the threshold
parameters (i.e., θ and λ) for the No-constraint and NDT-
constraint (i.e., the joint model) models. This plot shows a
considerable improvement in the precision of parameter re-
covery for the threshold parameters after considering an ad-
ditional constraint on non-decision time. This improvement

is more considerable for the Hyperbolic collapsing threshold
model.
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Figure 1: R-squared values for threshold parameters in ex-
ponential (left panel) and hyperbolic (right panel) collapsing
threshold models.

Figure 2 presents the sensitivity of the parameter recov-
ery to the noise level in non-decision time observation. We
simulated data with three standard deviation levels (i.e., σz =
0.3,0.6, and 0.9) for non-decision time observation. The re-
sults show that first, the parameter recovery is still reliable
even with a high noise level in non-decision time observa-
tion, and second, the parameter recovery of joint models is
substantially better than the parameter recovery of the pure
behavioral model.
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Figure 2: Illustration of sensitivity of parameter estimation to
the noise level in the non-decision time observations.

Conclusion
The proposed non-decision time constraint CT-DDM provides
a cognitive modeling framework in which all the collapsing
threshold parameters are reliably identifiable. Therefore, such
joint models allow researchers to interpret parameter values
directly, potentially helping to resolve controversial findings in
the urgent literature. Moreover, prior research has demon-
strated that urgency signal models can be reformulated as col-
lapsing threshold models (Smith & Ratcliff, 2022), indicating
that the proposed model is also applicable to urgency-based
accounts.
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