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Abstract
Healthy older adults show less distinct visual category
representations compared to young adults in later parts
of the ventral visual stream (VVS), a phenomenon known
as dedifferentiation. However, the neural mechanisms
causing this are unclear. We used a deep convolu-
tional neural network to model the VVS and applied noise
and synaptic damage to different layers of the model
while reading out category distinctiveness from a late,
category-selective layer that models inferior temporal
cortex (IT). We expected greater damage to IT to cause
stronger dedifferentiation. As predicted, greater damage
led to greater dedifferentiation. However, damage to ear-
lier layers of the model (e.g., V1) caused greater dediffer-
entiation in IT compared to damaging later layers. This
suggests that age-related dedifferentiation in IT could re-
sult from damage to upstream areas of the network. Our
findings also match structural brain imaging work indi-
cating early to late VVS white matter tract integrity is re-
lated to the distinctness of category representations. In
sum, our modelling approach for the first time provides a
mechanistic explanation for age-related dedifferentiation.
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Introduction
Dedifferentiation of visual representations in healthy older
adults is consistently observed (Koen & Rugg, 2019). Ded-
ifferentiation refers to reduced neuronal selectivity for cate-
gories, typically assessed via multivariate pattern analysis in
category-selective brain areas in inferior temporal cortex (IT)
by subtracting the average correlation of activation patterns
within stimulus categories from those between each category.

But what are the neural mechanisms that underlie age-
related dedifferentiation? One hypothesis is that age-related
neurodegeneration of gray matter in IT leads to dedifferen-
tiation. Indeed, brain volume in IT but not early visual cor-
tex appeared to decrease with age (Raz et al., 2005). An-
other line of hypotheses concerns white matter (WM) degra-
dation as a causal mechanism behind dedifferentiation. Stud-
ies have shown a negative relationship between measures of
WM integrity connecting earlier and later visual areas in the
VVS (inferior longitudinal fasciculus; ILF) and face dediffer-
entiation as well as facial processing (Bourbon-Teles et al.,
2021; Rieck et al., 2020). This suggests that the integrity of
connections between early and late visual areas might be es-
sential for distinct category representations. A final hypothe-
sis posits that increased neural noise leads to dedifferentiation
(Li et al., 2001), supported by electroencephalography (EEG)
findings showing that heightened noise is linked to face—but
not scene—dedifferentiation (Pichot et al., 2022).

We investigated whether these mechanisms underlie age-
related dedifferentiation using a deep convolutional neural net-
work (DCNN) lesioning approach. We simulated age-related
neurodegeneration in the ventral visual stream (VVS) by sev-
ering synapses or adding noise to DCNN weights. We then

tested whether these manipulations matched brain-imaging
data and examined how damage to different layers affected
dedifferentiation. We hypothesized that both greater damage
severity and damage to later, more category-selective layers
would increase dedifferentiation. To preview the results, we
found that greater damage indeed produced greater dediffer-
entiation, but unexpectedly, damaging layers corresponding to
earlier visual areas had the strongest effect, suggesting that
damage responsible for age-related dedifferentiation could be
localized outside the category-selective VVS areas.

Methods

In this study, we employed CORnet-RT, a DCNN trained on
the ImageNet classification dataset and designed with human
VVS in mind. Its architecture approximates the hierarchical
structure of the VVS, with processing stages intended to cor-
respond to areas V1, V2, V4, and IT (Kubilius et al., 2018).

We quantified differentiation by adapting a multivariate pat-
tern analysis approach, common in functional Magnetic Res-
onance Imaging (fMRI) studies. First, we passed images
through the model and saved unit activations from the output
of the IT block (each block contains 2 convolutional layers; Fig-
ure 1). Next, we generated a representational similarity ma-
trix by cross-correlating (Pearson’s r) these activations. From
this matrix, we computed a “differentiation” metric by averag-
ing within-category correlations (e.g., face-face) and subtract-
ing the average cross-category correlations (e.g., house-face)
(e.g., Koen & Rugg, 2019).

Figure 1: Procedure for computing the within-between metric
to quantify differentiation.

To investigate possible mechanisms of age-related dediffer-
entiation, we proceeded with stimuli from an age-related dedif-
ferentiation study (Haupt et al., 2024), enabling direct compar-
ison between model and human results. We used 64 images
spanning four categories (animals, faces, objects, places) and
passed them through CORnet-RT. We repeated this process,
introducing either Gaussian noise or synaptic damage (setting
a random fraction of weights to zero) at varying levels to each
block individually (V1, V2, V4, IT). Synaptic damage ranged
from 0 to 100% of weights in increments of 5%, while Gaus-
sian noise was drawn from a distribution whose standard devi-
ation increased from 0 to 3x the original weight distributions in
each layer, respectively, in increments of 0.1. We ran 200 sim-
ulations per condition, focusing on convolutional layer weights.



Results
Haupt et al. (2024) showed significant age-related dediffer-
entiation effects in most category contrasts on both EEG and
fMRI (Figure 2A top for fMRI results). By comparing category-
level differentiation in the intact model versus the damaged
model, we replicated this dedifferentiation pattern (Figure 2A
bottom). Notably, damage type (noise, synaptic damage) and
location (brain region) consistently reproduced these dedif-
ferentiation patterns, suggesting that this effect is apparent
across different forms of neural damage.

Figure 2: Results. A) Differentiation of human data (top; Haupt
et al., 2024) and our modelling results (70% synapses dam-
aged in IT; bottom). Error bars: 95% CI (top), 1.96 SD (bot-
tom). B) Mean within-between differentiation in IT (y-axis)
across damage severity (x-axis). Synaptic damage (left) and
noise (right) across damaged layers (colours). Error bars: 1
SD. C) Illustration of an IT unit’s receptive field across layers.

Next, we examined how damage type, severity, and loca-
tion affected the model’s overall category differentiation in IT
(Figure 2B). To investigate this, we computed the mean within-
between differentiation across all four categories from IT unit
activations after applying noise and synaptic damage across
different layers of the model. We expected greater levels of
damage and damage to later layers to cause stronger dedif-
ferentiation. Indeed, our results indicated that for both noise

and synaptic damage, greater damage severity led to greater
dedifferentiation. Surprisingly, damage introduced at earlier
blocks (e.g., V1, V2) caused greater dedifferentiation to repre-
sentations in IT than damage introduced at later blocks (e.g.,
V4 and IT). While age-related dedifferentiation is observed in
category-selective areas in IT, our findings provide the intrigu-
ing alternate explanation that dedifferentiation may be due to
damage elsewhere in the VVS.

Discussion
By using a DCNN as a model of the VVS, we demonstrated
that greater damage, simulating age-related neurodegenera-
tion, leads to greater dedifferentiation of category represen-
tations in IT, capturing brain imaging results. Furthermore,
we found that damage to earlier model blocks caused greater
dedifferentiation than damage to later blocks. This suggests
that the mechanism behind age-related dedifferentiation in IT
may be due to neurodegeneration of the WM tracts (ILF) that
connect early visual regions to IT, consistent with structural
imaging data (Rieck et al., 2020).

But what is the mechanism that underlies this surprising
result? By considering how information propagates through
the network in both the model and the VVS, we propose two
explanations. For noise, perturbations introduced at earlier ar-
eas could be amplified through subsequent computations over
multiple areas (i.e., multiple processing steps), accumulating
greater distortions when reaching IT. This mirrors the broader
challenge vision DCNNs face where untrained noise applied
to input images can cause significant detriments to perfor-
mance (Rodner et al., 2016). On the other hand, the effects of
synaptic damage are likely due to the nature of the receptive
fields caused by convolutional filters, akin to the VVS (Figure
2C). Specifically, individual units in the IT block in CORnet-RT
rely on computations performed by around 2000 V1 weights.
Thus, damaging only a subset of weights in V1 can distort
a disproportionately large portion of IT outputs. By contrast,
damaging IT itself results in a distortion more directly propor-
tional to the fraction of weights affected. In sum, our DCNN
lesion approach captured age-related dedifferentiation in IT,
and showed that it can be explained by the consequences of
neurodegeneration of the VVS’ WM pathway, the ILF.
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