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Abstract
Humans can quickly learn and update latent task struc-
tures, and use them to guide value-based decision-
making. In a functional magnetic resonance imaging
study, 52 participants learned a latent graph structure re-
quiring non-local value generalization upon reward rever-
sals. Performance was best explained by a latent cause
inference model that captures structure learning and ad-
mits value generalization. The functional imaging data
offered a possible substrate for this generalization by
demonstrating that the hippocampus tracked the under-
lying task structure and exhibited non-local reactivation
of unobserved sequences sharing a reward.
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sentational change; Replay

Introduction
The ability to generalize knowledge to novel situations in a
flexible manner is a hallmark of intelligent behavior. General-
ization has been proposed to be enabled by the formation of
abstract representations that capture the underlying structure
of an environment, often conceptualized as a cognitive map.
Recent work has provided compelling evidence that cognitive
maps enable inferences about unobserved relationships and
generalization (Garvert, Saanum, Schulz, Schuck, & Doeller,
2023; Liu, Mattar, Behrens, Daw, & Dolan, 2021; Gupta, Van
Der Meer, Touretzky, & Redish, 2010). Although cognitive
maps are widely implicated in cognitive phenomena in spa-
tial and conceptual domains (Bellmund, Gärdenfors, Moser,
& Doeller, 2018), much remains unknown about how they
are acquired and updated (Garvert, Dolan, & Behrens, 2017;
Moneta, Grossman, & Schuck, 2024; Whittington, McCaffary,
Bakermans, & Behrens, 2022), and, in particular, how pat-
terns and regularities are discovered across changing expe-
riences. We sought to elucidate the learning processes that
enable the formation and adaptation of cognitive maps, and to
test whether neural replay leverages learned task structure to
allow non-local value generalization.

Methods
Using a similar paradigm as Liu et al. (2021), we asked partici-
pants to learn a latent graph structure that contained a number
of outcome nodes associated with fluctuating rewards (Fig-
ure 1A). By manipulating both the rewards and the underlying
structure, we probed how cognitive maps are built, applied,
and adapted. Fifty-two participants completed a four-session
fMRI experiment across two days. The graph structure con-
sisted of four distinct four-step sequences, each composed of
brief 750-ms video clips of everyday objects (e.g., cars, ani-
mals), that led to an outcome node. Unbeknownst to partic-
ipants, three sequences (paths A, A* and B) led to a shared
reward on day one (i.e. the outcomes experienced after these
sequences are drawn from the same reward distribution, R1),
while one sequence (path C) led to a different reward (R2).
Importantly, two of the three common sequences contained

Figure 1: A. Latent task structure to be discovered. Four
sequences lead to two rewards (R1 and R2). Three paths
share the same reward (outcome similarity), enabling value
generalization. Moreover, two of these paths share their cat-
egories (category similarity). On day two, one shared path
(A*) switches from R1 to R2, necessitating relearning and an
update in value generalization. B. Example trial: Participants
passively view 750-ms video sequences before receiving a re-
ward (displayed as a point total ranging from 0 to 100). R1 and
R2 differ only in point value and are visually identical, partici-
pants must subsequently choose between two nodes to iden-
tify the more rewarding option at that moment. After reward
reversals, probing unobserved nodes serves as the primary
measure of structure knowledge.
semantically similar items (Paths A and A*), while the remain-
ing sequence contained unrelated items (Path B). The images
shown when traversing the sole path that led to R2 (path C)
were unrelated to all other items.

On day 1, participants learned the task structure by ob-
serving the shared reward fluctuation of the paths leading
to R1. The underlying reward distributions R1 and R2 were
reversed every 15 trials (on average), and we tested partici-
pants’ knowledge of the graph structure and the changing out-
comes by periodically asking them to make value-based deci-
sions between two nodes from two different paths. Crucially,
after reward reversals, participants were immediately probed
on nodes from unobserved paths, requiring them to generalize
value from observed to unseen paths. This one-shot general-
ization served as our measure of structure knowledge.

On day 2, participants were first explicitly informed about
the task structure, and later faced a structural change that
required adaptation of their previously learned generalization
strategy. FMRI data was acquired on both days and used
for representational similarity analysis and classifier-based
sequential reactivation analyses (Wittkuhn & Schuck, 2021;
Schuck & Niv, 2019). To model the computational processes
underlying participants’ inference about the reward generating
processes and how they changed over time, we developed a
Bayesian nonparametric latent cause inference (LCI) model
based on a Chinese Restaurant Process (Gershman & Blei,
2012; Gershman, Norman, & Niv, 2015). This allowed an un-
bounded number of latent causes to be inferred from the data,
capturing how participants discover the underlying structure
that governs the rewards. The model maintains multiple hy-
pothesized latent structures and learns to generalize by asso-
ciating multiple sequences with a shared latent cause.



Figure 2: A. Participants’ overall accuracy improved across the two days (top row) and during reversal trials (bottom row), demon-
strating effective value generalization. B. Representational similarity analysis revealed that the hippocampus tracked the task
structure on day one, with this effect diminishing on day two following a change in the latent structure. C. Averaged regression
coefficient time courses are shown. The blue line represents the sequential ordering of classifiers for the presented sequence.
The green (non-shared category) and red (shared category) lines correspond to coefficients for paths sharing the reward with
the presented sequence, while the black line indicates the unrelated sequence. Grouping is relative to the path presented on
each trial. Notably, the blue curve displays a sinusoidal pattern—with an early positive phase reflecting stronger activation of
early sequence elements, followed by a later negative phase indicating stronger activation of late sequence elements. D. Dur-
ing the prolonged inter-stimulus interval, aggregated reactivation evidence showed distinct reactivation for both non-presented
sequences that share a reward, compared to the presented and unrelated sequences.

Results

Participants demonstrated successful acquisition and applica-
tion of the task structure, with the percentage of correct an-
swers in choice trials improving from chance level (50%) to
87% (Fig. 2 panel A top row; β = 0.0012, p < 0.001). No-
tably, this was also true for performance on one-shot general-
ization across blocks (Fig. 2 panel A bottom row; β = 0.049,
p = 0.004), suggesting that participants correctly learned to
exploit the latent structure for value generalization. On day
2, with full knowledge of the task structure, participants per-
formed at near-ceiling levels from the outset. Following the
structural change, they quickly adapted their generalization
strategy, although there were individual differences in the rate
of adaptation. By the end of the task, participants had suc-
cessfully acquired the new structure, achieving high perfor-
mance levels. The LCI model provides an account of how par-
ticipants discovered and utilized the task structure. Through
integrating a Chinese Restaurant Process prior with a like-
lihood formed from the observed category sequence and
Gaussian rewards, the model identifies latent causes and
over time learns to map multiple sequences to a shared la-
tent cause. This mapping allows resolution of the problem of
non-local value updating, as unobserved sequences access
a shared value estimate. Model comparison confirmed that
the LCI model outperformed alternative approaches, captur-
ing both behavior on reward reversal and structure relearning
(LCI mean AICc = 44.6; alternative Temporal Difference agent
AICc = 64). Representational similarity analysis revealed that
the underlying task structure was tracked in the hippocampus,
demonstrating an increased representation over the course of
learning on the first day and a decrease in representation af-
ter structure change on the second day (tested using a linear
mixed-effects model that showed a significant three-way inter-
action between the latent structure captured by a model sim-
ilarity matrix incorporating similarity of shared reward nodes,
day, and phase, p = 0.026; Fig. 2 panel B). To test for replay,

classifiers of activity in visual cortex were trained on indepen-
dent data, and were applied to prolonged interstimulus inter-
vals after the presentation of the reward preceding the deci-
sions. Fast sequences generate a signature monotonic order-
ing of classifier probabilities as reflected by regression coef-
ficents (positive indicating a forward sequentiality, negative a
backward sequentiality). We observed increased reactivation
evidence for unobserved sequences sharing a reward com-
pared to unrelated sequences, following the stimulus-evoked
neural activation (Fig. 2 panels C and D). This effect was
more pronounced in moments of reversing rewards necessi-
tating value generalization (p = 0.004) and is predictive of be-
havioral performance in the following trials (p = 0.017), both
tested using linear mixed-effect models.

Conclusion
Our findings demonstrate that humans can rapidly learn and
flexibly update latent task structures to guide value-based
decision-making. The observed patterns of non-local neural
replay are in line with previous findings by Liu et al (2021) and
provide a potential neural explanation for how unobserved val-
ues are updated. This aligns with the emerging representation
of task structure in the hippocampus. The latent cause in-
ference model offers one potential computational account for
how participants learn the underlying task structure and adapt
it flexibly upon change. Together, these results present a po-
tential explanation for how we build, leverage, and adapt our
representations of the environment flexibly.
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