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Abstract 
Predictive processing theories propose that the brain 
continuously generates expectations about incoming 
sensory information and compares these predictions 
to actual inputs, resulting in sensory prediction 
errors. However, it remains unclear which stimulus 
features are predicted by the brain and hence which 
errors drive neural responses. Here, we addressed 
this question by recording EEG while participants 
viewed object images that were expected or 
unexpected based on probabilistic cues. We used a 
deep neural network to quantify low- and high-level 
visual representational distances between expected 
and unexpected stimuli. Neural activity was then 
regressed onto these surprise metrics. Results 
showed a modulation of evoked activity over occipital 
electrodes approximately 200ms after stimulus onset 
by high-level, but not low-level, visual surprise. These 
findings suggest that high-level visual predictions are 
rapidly integrated into sensory processing.  
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Introduction 
Perception is shaped by our prior knowledge (de Lange 
et al., 2018; Walsh et al., 2020). Accordingly, predictive 
processing theories postulate that the brain continuously 
generates expectations about sensory inputs and 
computes prediction errors, reflecting the discrepancies 
between predicted and actual inputs (Friston, 2005; Rao 
& Ballard, 1999). A critical question in understanding 

predictive processing is: What features are predicted by 
the brain, and consequently, what kind of mismatches do 
sensory prediction errors represent? One hypothesis is 
that prediction errors arise from features locally 
represented in each visual cortical area, such that low-
level surprise (e.g., orientation) is computed in early visual 
areas, whereas high-level surprise (e.g., object parts) is 
computed in higher visual areas. An alternative is that 
sensory prediction errors largely reflect high-level 
surprise, computed in higher areas and fed back to earlier 
areas. In support of the latter account, neural firing rates 
in macaque V1 (Uran et al., 2022) and fMRI BOLD in 
human visual cortices, including V1 (Richter et al., 2024), 
scale with high-level but not low-level surprise. Combined, 
these findings suggest that predictions may 
predominantly operate at higher levels of abstraction.  

However, little is known about the timing of these 
predictive processes. Yet, understanding when high-level 
surprise modulates sensory processing is crucial, as it 
provides insights into the neurocomputational principles 
and role of predictions in shaping perception. Early 
modulations imply that high-level expectations rapidly 
influence sensory processing, integrating high-level priors 
with key perceptual mechanisms. In contrast, late 
modulations indicate that predictions may only modulate 
later inference stages, possibly related to updating priors, 
or at post-perceptual stages, such as decision-making. 

To address the temporal dynamics underlying 
perceptual prediction, we exposed participants to object 
images that were expected or unexpected based on 
preceding cues, while recording EEG. Using a visual deep 
neural network (DNN) we quantified low- and high-level 
visual surprise per trial. Finally, we analyzed whether 
neural responses scaled with these surprise metrics. 



 
Figure 1: A) Single trial with letter cue (500ms) and predicted object (500ms). B) Transitional probability matrix determining the 
associations between cues and stimuli. Numbers indicate trial numbers within each of the eight blocks. C) Analysis rationale 
illustrating the regression of EEG data onto surprise using the DNN derived representational dissimilarity matrices. D) Visually evoked 
EEG responses scale with high-level visual surprise. Regression of surprise onto ERP amplitudes over parieto-occipital electrodes. 
Vertical dashed line indicates stimulus onset. Solid lines above the abscissa denote statistically significant clusters. 
 

Methods 
Stimuli and Experimental Paradigm. We recorded 
EEG from 38 participants while they viewed pairs of letter 
cues and full-color images from various categories. On 
each trial (Figure 1A), the letter cue probabilistically 
predicted the identity of the image. Each expected image 
was seven times more likely to follow its associated cue 
compared to any other image (Figure 1B). All images 
appeared as both expected and unexpected stimuli. 
Participants were not informed about the statistical 
regularities, but instead were tasked to categorize the 
entity in the image as animate or inanimate. 
Data Analysis and DNN representations. EEG 
data were recorded using a 64-channel actiCap system 
(BrainVision). Preprocessing consisted of filtering (0.1 to 
128hz), epoching, baseline correction (200ms before cue 
onset), independent component analysis for artifact 
removal, interpolation of bad channels, and re-
referencing. We focused on visual event related potentials 
over parieto-occipital electrodes, averaging across Oz, 
O1, O2, POz, PO7, PO8, PO3, PO4. For each time point 
(Figure 1C) we regressed EEG amplitudes against visual 
surprise. Surprise was quantified as the DNN-derived 
dissimilarity (1 – cosine similarity) of the unexpected seen 
image from the expected image on that trial. Following 
previous work (Richter et al., 2024), dissimilarity 

measures included low-level (layer 2) and high-level 
(layer 8) visual surprise extracted from AlexNet 
(Krizhevsky et al., 2017) pretrained on ecoset (Mehrer et 
al., 2021). Additionally, we included a non-visual semantic 
surprise model based on word2vec (Mikolov et al., 2013), 
a task regressor reflecting animacy category surprise, as 
well as a control model using layer 8 distances from an 
untrained (randomly initialized) DNN instance. 

Results 
We assessed whether the amplitudes of visual ERPs 
elicited by unexpected stimuli were modulated by different 
levels of surprise. Figure 1D shows that surprise 
modulated neural responses at parieto-occipital 
electrodes. A clear peak is evident approximately 200ms 
post-stimulus onset, showing an upregulation of the 
evoked response by high-level visual (layer 8) surprise. 
Indeed, we found only one statistically significant cluster 
reflecting an increase of the ERP amplitude by high-level 
visual surprise (tmax = 5.39, pcorrected = 0.001). No other 
surprise metric, including low-level visual surprise, 
attained statistical significance, suggesting that visual 
processing in our task is predominantly modulated by 
high-level visual surprise ~200ms post-stimulus onset. 



Discussion and Conclusion 
Our results revealed that high-level visual surprise 
modulates neural activity at relatively early stages of 
sensory processing, approximately 200ms post-stimulus 
onset, as evidenced by effects on the visually evoked 
P200 ERP. These findings support and extend previous 
results (Richter et al., 2024; Uran et al., 2022) and 
suggest that the brain rapidly incorporates high-level 
expectations during perceptual inference. Thus, high-
level predictions appear to fundamentally influence how 
sensory processing unfolds instead of (only) post-
perceptual processes. The absence of low-level surprise 
effects further emphasizes the dominant role of high-level 
information in shaping perception, though this effect could 
be shaped by task, suggesting that the brain abstracts 
beyond low-level regularities in favor of high-level 
information. Relying on high-level predictions may offer 
evolutionary advantages, because high-level errors can 
signal important, behaviourally relevant deviations that 
require rapid belief updating and fast adaptive responses. 
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