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 Abstract 
 In  daily  life,  we  readily  recognize  people,  places,  and 
 objects  (e.g.,  “soldier,”  “stadium,”  “flag”),  as  well  as 
 the  conceptual  links  between  them  (e.g., 
 “patriotism”).  Here,  we  show  that  conceptual-level 
 information  shapes  individuals’  gaze  patterns  in  a 
 naturalistic  eye  tracking  paradigm.  Participants  (N  = 
 61)  explored  a  large  set  of  real-world  photospheres 
 (N  =  100)  in  headmounted  VR  while  their  gaze  was 
 continuously  monitored  using  in-headset  eye 
 tracking.  To  assess  the  informational  priorities 
 guiding  individual  differences  in  gaze,  we  leveraged 
 the  embedding  spaces  of  large  vision  and  language 
 models.  We  found  that  individually-specific  gaze 
 patterns  across  diverse  real-world  photospheres  can 
 be  captured  by  a  large  language  model  (LLM)  that 
 encodes  abstract  relationships  beyond  the  visual 
 image  content.  We  demonstrate  that  the  embedding 
 spaces  of  language  and  vision  models  explain 
 unique  variance  in  gaze  behavior,  and  that 
 LLM-based  models  capture  individually  specific 
 attentional  priorities.  These  results  highlight  a  new 
 dimension  of  human  selective  attention:  namely,  the 
 influence  of  individuals’  unique  conceptual-level 
 information seeking priorities. 

 Keywords:  individual  differences,  naturalistic 
 visual attention, information seeking, concepts 

 Introduction 
 What  guides  individuals’  selective  attention  when 
 viewing  real-world  scenes?  Understanding  gaze 
 behavior  has  been  a  central  goal  in  psychology,  with 
 focus  on  the  roles  of  “bottom-up”  (visual  salience) 
 and  “top-down”  (semantic  meaning)  scene  features 
 (Henderson  &  Hayes,  2017)  .  However,  this 
 dichotomy  overlooks  the  influence  of  contextual 

 factors  on  gaze  behavior  (Awh  et  al.,  2012)  .  While 
 external  contexts  like  tasks  and  rewards  are  known 
 to  shape  attention  (Borji  &  Itti,  2014;  Tong  et  al., 
 2017)  ,  less  is  understood  about  how  intrinsic  factors, 
 like  an  individual’s  unique  conceptual  knowledge 
 and  interests,  guide  their  gaze.  This  gap  is  important 
 for  current  theories  that  forward  gaze  behavior  as  a 
 proactive,  information-seeking  process  (Haskins  et 
 al.,  2020;  Hayhoe,  2017)  .  Individuals  explore  scenes 
 in  the  real  world  proactively:  they  use  their 
 conceptual  knowledge  to  form  and  test  hypotheses 
 about  object  relationships.  Here,  we  explored  how 
 conceptual  information  beyond  the  visual  domain 
 influences  gaze  patterns  during  scene  viewing.  We 
 hypothesized  that  gaze  patterns  reflect,  in  part, 
 individuals’  stable,  conceptual  priorities.  To  test  this, 
 gaze  behavior  was  analyzed  from  adult  participants 
 who  explored  real-world  photospheres  in  virtual 
 reality  (VR).  We  developed  a  computational 
 approach  using  a  large  language  model  (LLM; 
 (Devlin  et  al.,  2019)  )  to  approximate  conceptual 
 information  in  scenes  and  its  role  in  shaping  gaze 
 patterns.  In  brief,  we  found  that  individual  gaze 
 patterns  are  strongly  predicted  by  the  LLM's 
 conceptual  feature  space,  which  accounted  for 
 significant  unique  variance  beyond  well-established 
 predictors of gaze (i,e., visual, motor features). 

 Methods 

 Participants  .  66  adults  (  n  =  36  female;  mean  age 
 20.67  years)  participated  in  this  study.  Following 
 exclusion, data were analyzed from 61 participants. 
 Stimuli.  We  used  100  diverse,  information-rich 
 photospheres,  selected  based  on  pilot  data  showing 
 consistent  attention  to  both  social  (e.g.,  people)  and 
 nonsocial  elements.  On  each  16-second  trial, 
 participants  were  instructed  to  “look  around  each 
 scene naturally, like you would in daily life.” 
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 Figure 1:  A)  LLM embeddings capture unique variance  in gaze patterns, relative to control feature spaces. 
 B) LLM gaze models can be used to generate individually-specific gaze predictions on left-out scenes. 

 Gaze  data.  Duration-weighted  fixation  density  maps 
 were individually plotted for each subject and scene. 
 Modeling  conceptual  information  using  an  LLM. 
 We  used  the  embedding  space  of  an  LLM  to 
 characterize  the  conceptual-level  information  in  each 
 photosphere.  First,  we  divided  scenes  into  densely 
 sampled,  overlapping  “tiles”  that  were  captioned  by 
 independent  human  raters;  then,  we  transformed 
 tiles  into  language  model  embeddings.  As  a  control 
 model  to  the  LLM,  we  used  a  visual  transformer 
 model  (ViT;  (Dosovitskiy  et  al.,  2020)  )  trained  on 
 image  classification,  to  model  the  visual  content 
 depicted  at  each  image  tile.  As  a  second  control 
 model  to  the  LLM,  we  used  the  tile’s  equirectangular 
 spatial  coordinates  (X,Y).  These  control  feature 
 spaces  were  used  to  test  whether  the  LLM 
 embedding  space  captured  unique  variance  in  gaze 
 patterns, beyond control spaces. 

 Results 
 LLM  embeddings  explain  unique  gaze  variance. 
 We  first  asked  whether  LLM  embeddings  capture 
 information  in  gaze  patterns  that  is  distinct  from 
 established  predictors:  individual  spatial  and 
 visual-level  feature  biases  (e.g.,  center  bias,  object 
 biases).  We  performed  a  variance  partitioning 
 analysis  on  an  “omni  gaze  model”  that  included  LLM 
 features  alongside  the  two  control  feature  spaces. 
 This  analysis  revealed  that  LLM  features  explained 
 significant  variance  beyond  control  feature  sets 
 (adjusted  R^2,  all-features  model:  M  =  0.14,  SD  = 
 0.02;  adjusted  R^2,  non-language  features  model:  M 
 = 0.11,  SD  = 0.01;  t  (60) = 49.6,  p  < 0.001; Fig 1A). 

 LLM  embeddings  predict  unique  gaze  patterns. 
 Next,  we  built  an  “LLM  gaze  model”  for  each 
 participant  by  using  L2  -  regularized  linear  regression 
 to  relate  their  gaze  distribution  to  only  the  LLM 
 feature  space,  iteratively  training  on  N-1  scenes,  and 
 generating  a  predicted  gaze  map  for  each  left-out 
 scene.  Then,  to  test  whether  LLM  gaze  models  were 
 individually  specific,  we  used  the  same 
 leave-one-out  approach  to  iteratively  assess  the 
 accuracy  of  an  individual’s  own  LLM  gaze  model 
 (correlation,  predicted  vs.  actual  map),  as  compared 
 with  the  LLM  gaze  models  of  all  other  individuals. 
 Specifically,  we  computed  an  “  own-other  difference 
 score”  for  each  participant  –  subtracting  the  average 
 accuracy  gain  (i.e.,  improvement  over  the  accuracy 
 of  a  generic  baseline  model)  of  others’  models  from 
 the  accuracy  gain  of  the  participant’s  own  model. 
 This  difference  was  significant  (own:  M  =  0.07,  SD  = 
 0.03;  other:  M  =  0.03,  SD  =  0.02,  t  (60)  =  11.22,  p  < 
 0.001;  Fig.  1B),  demonstrating  clear  accuracy  gains 
 for  one’s  own  LLM  gaze  model  prediction  vs.  other 
 participants’ models in almost every participant. 

 Discussion 
 Our  results  show  that  gaze  patterns  offer  insight  into 
 the  conceptual  priorities  different  individuals  bring  to 
 bear  while  exploring  their  visual  environment. 
 Specifically,  we  find  that  the  embedding  space  of  an 
 LLM  can  be  used  to  capture  variance  both  within 
 individual  gaze  patterns  (variance  partitioning)  and 
 across  individuals  (own-other  difference).  Overall, 
 we  find  that  each  individual’s  gaze  reveals  their 
 personal conceptual priorities during scene viewing. 
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