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Abstract
Neurons with specialized properties have been widely
characterized across the brain. It is a broad question
as to why this occurs, with computational theories of-
ten assuming a central role of nonlinear neuron activa-
tion functions and connectivity constraints. In this work,
we characterize neuron-specialization in artificial neural
networks by extending regression-based approaches for
predicting experimentally recorded neural activation pat-
terns. When investigating a range of performant artifi-
cial neural network architectures, we demonstrate that
(1) brain-aligned specialized neurons can emerge in lay-
ers without nonlinear neuron activation functions, and
(2) the emergence of brain-aligned specialized neurons
depends on training properties, not strictly on architec-
ture. Overall, this work suggests that new and com-
plementary explanations for the emergence of special-
ized neurons in biological brains may be needed, such
as processes underlying learning and optimization. Fur-
thermore, this work motivates brain-to-model compari-
son techniques that respect and further investigate prop-
erties of neuron specialization. These results may ad-
ditionally inform general interpretability approaches for
artificial neural networks, where methods for obtaining
units for inspection is an active area of research.
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Introduction
Neurons with specialized properties have been widely ob-
served and characterized across the brain (e.g. neurons re-
sponding to specific complex visual features, place cells, etc.).
At a fundamental level, there is a larger question of whether to
consider neuron-specific properties at all or to to to look at a
population level (Averbeck, Latham, & Pouget, 2006; Barack
& Krakauer, 2021; Haxby et al., 2011; Gauthaman, Ménard,
& Bonner, 2024). After all, the linearly decodable informa-
tion and the relative distances between activation patterns can
be preserved when linearly transforming from an original neu-
ral basis with a geometry-preserving rotation matrix. Indeed,
this perspective dominates approaches to compare the activa-
tion patterns of artificial neural network models with the brain.
However, in brains, there are additional biological constraints
that violate the equivalence between different population-level

encoding realizations, even if they share the same geometri-
cal properties. A predominant constraint that can affect the
specialization of neurons is their nonlinear activation, which
impacts the energy efficiency of population pattern genera-
tion and transmission. In computational models, it is an active
area of research to find how specialized neurons may emerge
with a focus on hypotheses around nonlinear activation, such
as sparse coding (Olshausen & Field, 1997), disentanglement
of representations (Higgins et al., 2021; Soulos & Isik, 2024),
wiring costs (Blauch, Behrmann, & Plaut, 2022; Margalit et al.,
2024), and the importance of neuron activation nonlinearities
(Khosla, Williams, McDermott, & Kanwisher, 2024). As a case
study, we investigate population activation patterns in artificial
neural networks in layers without output nonlinear activation
functions. We demonstrate that (1) brain-aligned specialized
neurons can emerge in layers without output nonlinear neuron
activation functions, and (2) the emergence of brain-aligned
specialized neurons is controlled by properties of training and
not strictly architecture dependent.

Figure 1: Regression Approach. Model activations (X ) predict
voxel-wise fMRI data (Y ) via an initial regression yielding co-
efficients β. The L2 norm of β selects the top p% of model
dimensions, used in a second regression. Cross-validated
Pearson correlations are computed for original, randomly ro-
tated, and PCA-rotated model activations.

Results
As a proof of principle, we investigate a selection of artifi-
cial neural network architectures, including transformers. We
perform comparisons between model activation patterns and
fMRI stimulus-evoked responses from a representative sub-
ject of the Natural Scenes Dataset (Allen et al., 2022). To
characterize the neuron-specific coding properties in these
networks, we compare brain similarity properties of activa-



Figure 2: Neuron specialization occurs in models without nonlinear activations and varies between training method. A. Model-
brain score curves are calculated when varying the top p% of model dimensions included. In many models, differences in
score curves are observed between model and random bases. B. An aggregate neuron-specialization score for each model is
computed by normalizing the difference between score curves of Model-Random by PC-Random. Training methods include su-
pervised (Sup.), self-supervised learning (SSL), and contrastive language-image pretraining (CLIP). Error bars are bootstrapped
from 10 random rotation samples.

tion patterns in the original model (model bases) with rotated
versions of these activity patterns that are random (random
bases) or based on principal components (PC bases). Note
that traditional model to brain comparison methods such as
representational similarity analysis and regression-based ap-
proaches are rotation-invariant and lead to the same brain
similarity scores for these rotated models. However, for
regression-based approaches (where model activations are
used to predict brain activity and scored on held-out data),
the relative weighting and contributions of each artificial neu-
ron to the overall fit will be different. This relative weighting
can be inspected via the learned coefficients, where with reg-
ularized regression, the magnitude of coefficients is a direct
measure of the contribution of the artificial neuron to the sim-
ilarity measure. By re-fitting the regression model while using
only a fraction of the overall artificial neurons, we can measure
how concentrated the brain-predicting activity is on a subset of
specialized neurons (Fig. 1). To characterize the overall distri-
bution of neuron-specialization, we refit the regression model
for a range of percentages of neurons included. Neuron-
specialization with a random rotation (sampled from the spe-
cial orthogonal group) is a baseline that reflects how the spe-
cialization of a small subset of neurons can be attributed to
chance. Alternatively, with the PC bases, the artificial neurons
are explicitly computed to maximize the explained variance,
where a higher neuron-specialization is expected.

We find that neuron-specialization occurs across some but
not all models, and contrary to previous predictions, it is not
dependent on including a nonlinear activation function (Fig.
2). The artificial neural network models span architecture
classes of vision transformers (ViT-B-16, ViT-B-32) and con-
volutional neural networks (AlexNet, ResNet-50, ConvNext-
B) and vary in training approach (supervised, self-supervised
(Caron et al., 2021), and language alignment (Radford et al.,

2021)). For a subset of transformer models, (which lack non-
linear neuron activations at layer outputs), we find a surpris-
ingly high degree of neuron specialization where the neuron-
specialization in the model basis can match the principal com-
ponent basis (Fig. 2A). That is, the subset of neurons in the
PC basis that are ranked to explain the overall signal vari-
ance are equal to the model bases (unlike random rotations).
Additionally, we find that the emergence of brain-aligned spe-
cialized neurons depends on training properties, not strictly
architecture (Fig. 2A-B). With the same ViT model architec-
ture, training with language alignment and self-supervised ap-
proaches leads to enhanced neuron specialization compared
to supervised training on ImageNet classification.

Discussion
In this work, we characterize neuron-specialization in ar-
tificial neural networks and find that brain-aligned neuron-
specialization exists in model layer outputs without activation
nonlinearities or other constraints such as wiring costs. These
results suggest additional explanations for the emergence of
specialized neurons in biological brains may be needed. More
broadly, observations consistent with neuron specialization (or
a ”privileged basis”) are observed between layers in trans-
former networks, such as certain dimensions with large acti-
vations (Kovaleva, Kulshreshtha, Rogers, & Rumshisky, 2021;
Dettmers, Lewis, Belkada, & Zettlemoyer, 2022), but there
is no consensus view on why this neuron specialization may
emerge (Elhage, Lasenby, & Olah, 2023). A leading explana-
tion is that utilizing an optimizer which stores momenta weight-
wise in the model’s neural basis (Elhage et al., 2023; He, Noci,
Paliotta, Schlag, & Hofmann, 2024) may be the primary con-
tributing factor. The possibility that neuron specialization can
arise through weight-wise optimization processes in artificial
neural networks offers a new and complementary explanation
for how specialization might emerge in biological brains.
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