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Abstract: 

Human visual perception involves transforming low-level visual 
features into high-level semantic representations. While deep 
neural networks (DNNs) trained on object recognition tasks 
have been promising models for predicting hierarchical visual 
processing, they often fail to capture higher-level semantic 
representations. In contrast, large language models (LLMs) 
encode rich semantic information that aligns with later stages of 
visual processing. Here we investigated whether combining 
vision DNN features and semantic embeddings from LLMs can 
better account for the neural dynamics of visual perception in 
electroencephalography (EEG) data. We demonstrated that their 
combination significantly improved the prediction of neural 
responses compared to either model alone. This approach 
outperformed multimodal modelling, and model comparison 
showed that the observed improvement was due to capturing 
complex information rather than a single factor.  
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Introduction 

Visual perception is a fundamental cognitive process 

involving multiple processing stages (Riesenhuber and 

Poggio, 1999). While DNNs trained on object recognition 

tasks have successfully captured the hierarchical visual 

representations (Cichy and Kaiser, 2019), they are limited in 

representing semantic information (Jozwik et al., 2023). In 

contrast, LLMs trained on vast corpora of texts represent 

semantic aspects (Doerig et al., 2024). On this basis, we 

hypothesized that integrating these complementary 

features from vision and language models would better 

explain the neural dynamics during visual perception than 

either model alone. To test this, we derived vision DNN 

representations from CORnet-S (Kubilius et al., 2019) and 

LLM representations from OpenAI's text-embedding-3-large 

model. We then trained encoding models predicting neural 

responses in EEG data from either model alone or their 

convex combination. 

Methods 

Encoding models of EEG visual responses 

We used a large-scale EEG dataset (THINGS EEG2) of 10 
participants viewing 16,740 naturalistic object images 
(Gifford et al., 2022). We trained linear encoding models to 
predict EEG responses. The encoding models differed by 
the model representation used as the regression basis (Fig. 
1): 

 

Figure 1: Model pipeline.  

i) the vision DNN representations alone (termed vision 
model, in blue). The vision DNN representations were 
extracted using CORnet-S (Kubilius et al., 2019), a 
brain-inspired DNN. We extracted feature maps from the 
last layers of areas V1, V2, V4, IT, and decoder. Then we 
applied nonlinear PCA to reduce the representations to 
1,000 dimensions. 

ii) the LLM representations alone (termed language model, 
in orange). To obtain LLM representations, we first used 
GPT-4V (OpenAI et al., 2024) to generate five distinct 
versions of descriptions for each image. Then, these 
descriptions were converted to embeddings using OpenAI's 
text-embedding-3-large model and averaged across 5 
versions. The embeddings were reduced to 1,000 
dimensions using PCA. 

iii) the convex combination of vision DNN and LLM 
representations together (termed fusion model, in green). 

We evaluated model performance using Pearson 
correlation between predicted and actual EEG responses 
for each channel and time point. We calculated noise 
ceilings to estimate theoretical optimal performance given 
the noise level in the EEG data. To isolate the unique neural 
contributions associated with each feature type, we 
conducted partial correlation analyses between fusion 
model predictions and EEG responses, controlling for either 
vision DNN or LLM representations. We bootstrapped peak 
latencies (95% CI, 10,000 iterations).  

Results 

Combining vision DNN with LLM representations 
improves neural prediction with distinct 
spatiotemporal patterns for visual and semantic 
processing  

The vision model (blue curve) peaks at 110 ms (105-115 
ms) and the language model (orange curve) peaks at 365 

https://www.zotero.org/google-docs/?Ee25Oj
https://www.zotero.org/google-docs/?Ee25Oj
https://www.zotero.org/google-docs/?CRofPv
https://www.zotero.org/google-docs/?J00HOJ
https://www.zotero.org/google-docs/?1Mfpr7
https://www.zotero.org/google-docs/?wG3fBf
https://www.zotero.org/google-docs/?EEV2Jt
https://www.zotero.org/google-docs/?tUUITJ


ms (185-370 ms), with a significant latency difference of 
255 ms (75-265 ms, p < 0.001). This is consistent with the 
expectation that the vision model predicts earlier visual 
processing stages, and the language model predicts later 
semantic processing stages. The fusion model (green curve) 
combined the advantages of both models, significantly 
outperforming either model alone (Fig. 2A).  

Subtracting individual model predictions from the fusion 
model revealed distinct temporal contributions: 
improvements specific to the vision model (purple curve) 
peaked early at 90 ms (85 – 90 ms), while improvements 
specific to the language model  (red curve) peaked later at 
365 ms (360-400 ms) (275 ms (275 – 310 ms, p < 0.001 for 
latency difference) (Fig. 2B). Topographic analysis using 
partial correlations revealed that the vision model’s unique 
contributions localized to medial occipito-parietal 
electrodes (Fig. 2C), whereas the language model’s unique 
contributions revealed two distinct semantic processing 
stages: an early stage (peaks at 200 ms (195 – 260 ms)) in 
bilateral temporo-occipital electrodes and a later stage 
(peaks at 365 ms (360-385 ms)) involving additionally 
parieto-frontal electrodes (Fig. 2D). 

Figure 2: Performance evaluation. A) Pearson correlation 
B) Subtraction C) Partial correlation controlled for LLM 
representations D) Partial correlation controlled for DNN 
vision model representations 

The fusion approach integrates complex semantic 
information and outperforms multimodal models 

To determine the nature of the predictive information 
derived from LLMs we compared various fusion models 
using different language inputs. We found that the fusion 
model with full descriptions outperformed those using 
human-annotated or top 5 DNN-generated category labels 
(Fig. 3A), as well as those with limited linguistic inputs 
(noun-only, adjective-only, verb-only in descending order) 
(Fig. 3B). Those results demonstrated that our fusion model 

integrated complex semantic information, with most 
information coming from nouns. 

We benchmarked our fusion model approach against CLIP 
(Radford et al., 2021). We found that our fusion model 
significantly outperformed CLIP encoding model when 
deriving features from the image or text encoder of CLIP, or 
fusing them together (Fig. 3C), suggesting that specialized 
models optimized for their respective feature types might 
extract more informative representations than joint training 
multimodal approaches. 

 

Figure 3: Model comparisons. A) Category-only B) Limited 
linguistic inputs C) CLIP 

Discussion 

Our fusion model demonstrated superior performance 
compared to unimodal models, confirming the 
complementary nature of visual and semantic information 
during visual perception (Enge et al., 2023). We observed 
distinct spatiotemporal neural dynamics for visual and 
semantic information processing. Visual effects emerged 
early (~90 ms) in medial occipito-parietal channels, 
consistent with feedforward early visual processing models 
(Cichy et al., 2014). Semantic effects occurred in two stages. 
Early semantic effects peaked near 200 ms in bilateral 
temporo-occipital electrodes. The timing and localization 
align with anterior temporal lobe (ATL) activation 
(Schendan and Maher, 2009; Clarke et al., 2015), indicating 
an early semantic activation stage. The late semantic 
pattern (~365 ms) parallels the N400 component (Kutas and 
Federmeier, 2011), suggesting a deeper semantic 
integration stage.  
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