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Abstract
Deep Neural Network (DNN) models provide a compu-
tational framework that enables rigorous understanding
of vision. Recent DNN-based motion models have suc-
cessfully replicated illusions like reverse-phi and barber
pole, suggesting possible shared computational princi-
ples with human motion processing. However, findings
have been mixed on whether DNN models can replicate
the ”Rotating Snakes” illusion—static patterns that in-
duce motion perception in humans. We tested represen-
tative optical flow estimation models on both grayscale
and color versions of Rotating Snakes, including those
featuring recurrent architectures and different training
approaches. None of the models predicted optical flows
matching the continuous rotational motion humans per-
ceive, either when presented with consecutive static im-
ages or under simulation conditions believed to trigger
the illusion, such as saccadic eye movements and stim-
ulus onset. Only the motion energy sensor and self-
attention based Dual model estimated partial rotation in
expected regions, matching or opposing predicted direc-
tions—an effect absent in controls. Our results high-
light the gap between current DNN-based motion mod-
els and human vision. Future models tested in experi-
mental loops should incorporate mechanisms account-
ing for possible explanations of the Rotating Snakes
illusion, such as pupil dilation, eye movements, and
contrast-dependent processing latency, as well as color-
and contrast-sensitive adaptation functionality.
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Introduction
The ”Rotating Snakes” illusion (Kitaoka & Ashida, 2003) con-
sists of static patterns with concentric micropatterns of asym-
metric luminance that create illusory rotational motion, par-
ticularly in peripheral vision (Murakami et al., 2006). A uni-
fied account for this phenomenon remains unestablished,
with several competing explanations proposed in the litera-
ture: contrast-dependent differences in neural response tim-
ing in V1 and MT interpreted as motion by first-order detectors
(Conway et al., 2005; Fermüller et al., 2010; Bach & Atala-
Gérard, 2020); erroneous estimation of local motion signals
and fixational eye movement effects (Murakami et al., 2006;
Fermüller et al., 2010); non-linear saturation of motion de-
tectors and saccades upon pattern onset (Backus & Oruç,
2005); reflexive pupil dilation responding to transitory lumi-
nance changes (Mather & Cavanagh, 2025).

DNNs have emerged as a powerful tool for modeling vision
(Kriegeskorte, 2015). Researchers found that PredNet could
reproduce the Rotating Snakes illusion, suggesting predic-
tive coding as a putative mechanism (Watanabe et al., 2018).
Reproduction of this effect lacks robustness across network
instances and consistent alignment with psychophysical and
electrophysiological findings (Kirubeswaran & Storrs, 2023).

Recent DNN-based motion models have successfully repli-
cated several classic motion illusions, suggesting potential
shared computational principles with human motion process-
ing (Solari et al., 2015; Z. Sun et al., 2023, 2025). Here, we
investigate whether representative DNN-based motion mod-
els are capable of reproducing the Rotating Snakes illusion.

Figure 1: Images used for model inputs. Rotating Snakes illu-
sion stimuli (top row) induce perception of counter-clockwise
motion in human observers, while control stimuli (bottom row)
with modified color/luminance ordering of micropatterns in-
duce no motion perception. From left to right: Grayscale, blue-
yellow, and red-green versions.

Table 1: Summary of motion estimation models. M-S: multi-
scale methods; R-D: recurrent decoding methods; SV: super-
vised learning; USV: unsupervised learning; Bio.: Biocomput-
ing methods.

Model Param. M-S R-D SV USV Bio.
FFV1MT N.A • •
PWC-Net 8.75 M • •
RAFT 5.26 M • • •
LiteFlowNet2 6.42 M • •
DorsalNet 55,296 • •
ME-Attention 14.7 M • • • •
Dual 25.6 M • • • •

Results
We generated modified versions of the Rotating Snakes il-
lusion (Kitaoka & Ashida, 2003) consisting of concentric re-
peated cycles of four stepwise luminance levels, with RGB
values matched to that of Uesaki et al. (2024), along with cor-
responding controls (Fig. 1). We tested models’ motion esti-
mation on illusion and control stimuli using three presentation
conditions: static (consecutive identical images), microsac-
cade (rightward-downward stimulus translation), and stimulus-
onset (blank to stimulus). The microsaccade condition sim-
ulated the experiment in Otero-Millan et al. (2012) with ap-
proximately 0.2° visual angle saccade while viewing an 8°-
diameter disk. To verify models could detect real motion, we
generated stimuli by physically rotating control images. We
evaluated alignment between model predictions and human



Figure 2: Test results under microsaccade simulation. (A) Optical flow estimates from models for the grayscale illusion stimuli.
Color saturation indicates flow speed. Inset shows ground truth flow from physically counterclockwise rotating stimuli. (B) Degree
of alignment with human perception across visual space. Box plots show 25th-75th percentile range with means (dark red lines).
Values closer to 1 indicate counterclockwise predictions, while values closer to -1 represent clockwise predictions.

perception using 1− e/90, where e is the angular error be-
tween predicted and ground truth optical flow vectors that
mimic human judgment (counterclockwise rotation).

Models showed correct predictions of optical flow for the
real motion condition, except for LiteFlowNet2 (Hui et al.,
2020) variants which predicted little to no optical flow except
for a region of rightward motion (Fig. 2A). FFV1MT (Solari
et al., 2015), a motion energy model inspired by the V1-MT
processing pathway, predicted optical flow in the direction of
the stimulus shift. Despite being previously shown to capture
reverse-phi motion phenomena, ME-Attention (Z. Sun et al.,
2023) generated vertical flow estimates and did not produce
responses in the direction of the stimulus shift. This model
is also built on trainable spatiotemporal filters and implements
a self-attention motion integration mechanism. Spatial pyra-
mid based models (PWC-Net (D. Sun et al., 2018) and Lite-
FlowNet2) and a representative state-of-the-art DNN-based
optical estimation model (RAFT (Teed & Deng, 2020)) ex-
hibit biases toward structural motion. Training datasets and
fine-tuning methods also did not impact the generated optical
flow predictions of LiteFlowNet2, as versions trained and fine-
tuned either on KITTI (Geiger et al., 2013) or Sintel (Mayer et
al., 2016) datasets performed similarly. In contrast, Dorsal-
Net (Mineault et al., 2021) a 3DResnet trained with the objec-
tive of predicting dorsal stream neural recordings and contain-
ing units tuned for complex optical flow patterns such as rota-
tion and expansion, generated opposing flow predictions and
greater flow magnitudes at the edges of the stimulus micropat-
terns. Dual (Z. Sun et al., 2025), a V1-MT pathway inspired
model capable of first- and second-order motion perception
with self-attention, predicted regions of counterclockwise ro-
tation of the grayscale illusion as well as a region of motion
estimation in the direction of the stimulus shift.

For static and stimulus-onset presentation conditions, al-
though optical flow maps were qualitatively different from the
microsaccade condition, all models failed to reproduce contin-
uous motion that aligns with human perception, with only Dual
being capable of predicting partially counterclockwise motion.

Quantification analysis shows only Dual exhibiting closer
alignment with counterclockwise motion in the grayscale illu-
sion condition (Fig. 2B). Although rotation motions were also
predicted by Dual for color versions, the direction was oppo-
site (clockwise) for the blue-yellow version, while both direc-
tions existed in the optical flow map for the red-green version.

These findings indicate that current DNN models struggle
with ambiguous luminance-defined local motion signals and
lack the ability to globally integrate them, limiting their com-
patibility with stimuli used in human vision research.

Conclusions
We show that visual-motion models fail to predict optical flow
in the direction of illusory motion perceived by humans. Non-
biocomputing methods track only microsaccade direction due
to their focus on absolute image correspondence between
frames and vulnerability to changes in pixel intensity. In com-
parison, biocomputing methods captured motion flow beyond
the microsaccade without showing rotational patterns, except
for Dual, the only tested model capable of second-order mo-
tion perception. DNN performance depends heavily on ar-
chitecture and training data, with models often overfitting to
natural color datasets and generalizing poorly to artificial and
grayscale stimuli. Future model development should account
for eye movements and implement mechanisms for natural-
istic brain-like spatiotemporal dynamics in response to lumi-
nance changes responsible for first-order motion perception.
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