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Nanda H Krishna∗ (nanda.harishankar-krishna@mila.quebec)
Mila – Quebec AI Institute
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Abstract
Brain-computer interfaces (BCIs) offer a promising ap-
proach for restoring mobility and communication in in-
dividuals with paralysis, motor impairments, or neurode-
generative diseases. This is achieved by learning a “de-
coder”, which translates neural activity to an intended
behaviour. Traditional decoding approaches often rely
on simple statistical methods and recurrent neural net-
works that are highly specific to individual sessions
of data collection, resulting in models that struggle to
generalize to new data. On the other hand, empow-
ered by the availability of large-scale multi-session neu-
ral datasets, recently developed Transformer-based de-
coders demonstrate strong generalization performance,
but are ill-suited for real-time inference due to their high
computational complexity. To bridge the gap between
these two approaches, we propose POSSM, a hybrid archi-
tecture that combines attention with a state-space model
backbone. Our trained models demonstrate efficient real-
time inference on intervals that are a fraction of a second
long, while also demonstrating strong generalization to
unseen sessions and individuals, thereby preserving the
strengths of both the traditional and modern approaches
to neural decoding.

Keywords: neural decoding; brain-computer interfaces; neural
spiking data; state-space models; attention

Introduction
Neural decoding—the process of mapping neural activity to
behavioural or cognitive variables—remains a core objective
for brain-computer interfaces (BCIs). Through advances in
electrophysiological recording techniques and artificial intel-
ligence (AI), recent years have seen great strides in the de-
sign of neuroprosthetics for decoding movement (Flesher et
al., 2021) and speech (Willett et al., 2023), as well as under-
standing memory retrieval (Chandravadia et al., 2020).

In particular, motor BCIs can provide a more naturalistic
approach to restoring movement by predicting cursor move-
ments intended by the individual, given concurrently recorded
neural activity. Along with the development of neuroprosthet-
ics, it can provide a solution for patients suffered from paraly-
sis or amputation (Collinger et al., 2013).

In this paper, we focus on neural spiking data in motor
tasks, one of the most commonly encountered modalities for
brain datasets. Spikes are irregularly-timed electrical pulses
neurons fire to communicate with one another. From neuro-
science experiments, spiking events associated with individ-
ual units can be extracted from recorded neural activity and
used for neural decoding. Traditionally, neural decoding meth-
ods rely on “binning”, a process where the spikes occurring
within each time bin are counted for individual units and used
as input to the decoder. Typical decoder models include sta-
tistical methods (Wu et al., 2002) as well as recurrent and
feedforward neural networks (Glaser et al., 2020). However,
many of these methods hard-code the number of units in their

input dimension, making it cumbersome both when aggregat-
ing multiple sessions with different combinations of units and
when transferring to new sessions. These shortcomings have
motivated an approach that is more expressive and generaliz-
able.

Building upon recent advancements in deep learning
(Jaegle et al., 2022), Azabou et al. (2023) have recently pro-
posed a scalable Transformer-based framework for neural de-
coding, called POYO. In contrast to binning-based approaches,
POYO is equipped with a new tokenization scheme that treats
individual spikes as tokens. As a result, POYO does not suffer
from loss of temporal resolution as with binning, nor does it
rigidly restrict the input format in terms of the number of units.
Pre-trained on large-scale multi-session neural datasets, it
demonstrated state-of-the-art generalization performance on
held-out sessions and even new animals and datasets. How-
ever, POYO is non-causal, therefore requiring full 1-second
context windows of spike trains, which in turn impose a latency
of the same duration for behaviour decoding. In addition, the
use of stacked self-attention layers in the model leads to an
expensive inference complexity that scales quadratically with
respect to the number of latent tokens extracted from each
context window. While this number is held constant in POYO for
a context length of 1 second, more latent tokens are likely re-
quired for longer time sequences. These attributes largely limit
its real-time decoding applications.

To overcome these challenges, we propose a hybrid archi-
tecture called POSSM, which retains both the flexibility of the
POYO tokenizer and a much faster inference speed brought
by the state-space model (SSM) backbone. We demonstrate
that POSSM can be trained on large-scale multi-session neu-
ral datasets spanning multiple animals, tasks and datasets,
while also generalizing to new sessions—all with consider-
ably smaller 50ms windows. Moreover, POSSM benefits from a
computational complexity comparable to that of recurrent net-
works, marking substantial advantages over the POYO model
in practice. These characteristics make POSSM an ideal candi-
date for real-time, online neural decoding.

Methods

POSSM is a hybrid model comprising attention and recurrence,
and is amenable to real-time neural decoding. As shown in
Fig. 1, POSSM consists of a tokenizer for neural spikes, a cross-
attention module to construct latent representations of this
spiking activity, and an SSM backbone to process sequences
of such latents and decode behaviour.

Spike Tokenization. We adopt the tokenization scheme
from POYO, shown in Fig. 2. Each spike acts as a token con-
taining information on the neural unit it came from and the
timestamp at which it occurred. This is achieved by repre-
senting each neural unit as a learnable “unit embedding” and
augmenting it element-wise with a rotary positional embed-
ding (RoPE) (Su et al., 2023) associated with the timestamp.
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Figure 1: Proposed POSSM architecture for neural decoding.
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Figure 2: Individual spike tokenization scheme adapted from
Azabou et al. (2023).

Input Cross-Attention. Similar to POYO, we use cross-
attention as an encoder to build latent representations from
individual spike tokens, where queries are from a trainable set
of latent tokens and key-value pairs from input spikes. How-
ever, here we did so in an iterative fashion. As the encoder
iterates through all available time intervals, the latents cross-
attend with the spike tokens from the same interval alone.

State-Space Model and Output Projection. The result of
the input cross-attention is then sent as an input to a Mamba
model (Gu & Dao, 2024) that tracks a state across these
short context windows. The hidden states from the Mamba
model are then used as key-value pairs in an output-cross at-
tention module that can be queried at different timestamps
within the interval. Each query has a session embedding
that captures differences due to experimental setup and other
session-specific attributes that influence the recordings.

Results
We conducted experiments on two publicly available motor
BCI datasets of nonhuman primates (Perich, Miller, Azabou,
& Dyer, 2025; O’Doherty, Cardoso, Makin, & Sabes, 2020),
comprising 151 recording sessions spanning five individu-
als performing either centre-out (CO) or random target (RT)
reaching. The goal of decoding is to predict the 2D cursor
velocities given recorded neural activity. The data was divided
into batches such that input sequences to the model were all 1
second in length. Following Azabou et al. (2023), 14 sessions
were held out of the multi-session training and used to evalu-
ate the model’s generalization to new sessions and animals.
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Figure 3: Decoding accuracy on centre-out (CO; left) and ran-
dom target (RT; right) reaching tasks for a held-out subject.
POSSM variants include single-session models (SS), multi-
session models fine-tuned with just unit identification (UI), and
multi-session models that are fully fine-tuned (FT).

MLP GRU POYO
400ms
(SS) (SS)

POSSM
50ms

(MS)

0

2

4

6

#
 p

a
ra

m
e

te
rs

1e6

MLP GRU POYO
400ms
(SS) (SS)

POSSM
50ms

(MS)

0

5

10

15

20

in
fe

re
n

ce
 t

im
e

 (
m

s)

Figure 4: Comparing inference time per prediction (left) and
model size (right). POSSM variants are single-session (SS)
and multi-session (MS) models. POSSM is faster and more
lightweight than POYO.

In addition to single-session and multi-session POSSM, various
baseline methods were tested, including gated recurrent unit
(GRU) (Cho et al., 2014), multi-layer perceptron (MLP) (Glaser
et al., 2020), and POYO (Azabou et al., 2023) with a context
length of 400ms. Our results are presented in Fig. 3 and 4.

Conclusion

We introduce a novel Transformer-SSM hybrid architecture
that allows for real-time neural decoding and easy generaliza-
tion to other datasets. We find that the performance of this ar-
chitecture is comparable to or better than state-of-the-art ap-
proaches, while remaining lightweight and with low inference
latency. With larger multi-dataset models, we show the bene-
fits of data scaling for effective generalization to new sessions
and individuals. In all cases, our models were at most half the
size of a comparable POYO model (605K vs 1.3M for single-
session, 4M vs 13M for multi-session). In the future, we wish
to use self-supervised learning to learn meaningful represen-
tations across more datasets and even species. With effective
pre-training, we could eventually build a foundation model for
neural decoding, which could be fine-tuned to different sev-
eral BCI tasks including motor, speech (Willett et al., 2023),
and handwriting decoding (Willett, Avansino, Hochberg, Hen-
derson, & Shenoy, 2021).



Acknowledgments

The authors would like to thank Mehdi Azabou, Eva Dyer,
Patrick Mineault, and Blake Richards for support and feed-
back. MGP acknowledges support of a Future Leaders award
from the Brain Canada Foundation and a J1 Chercheurs-
boursiers en intelligence artificielle from the Fonds de
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