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Abstract

How is commitment achieved in perceptual decisions
under incomplete evidence? Standard models relying
on bounded accumulation of evidence assume a read-
out based on the sign of the accumulator at stimulus
termination, but this has not been properly validated.
We aimed to resolve this by adapting an established rat
auditory lateralization task, imposing varied maximum
sound durations (SDmax). When SDmax was shorter
than typical reaction times, accuracy decreased, but re-
mained surprisingly high even for very brief stimuli (e.g.
15ms). Computational modeling, using an adapted DDM
framework incorporating both stimulus-dependent and
stimulus-independent decision processes, explored how
choices are determined post-offset. Models assuming
the aforementioned standard readout failed to capture the
data. Instead, behavior was best explained by assuming
evidence integration continues after offset (approximated
by exponential decay of the neural activity providing the
sensory input), but crucially, if the decision bound is not
reached during this period, the subsequent choice is ran-
dom. Overall, this work quantifies decision-making under
temporal constraints, indicating that bound-crossing is
a fundamental requirement to reliably convert integrated
sensory evidence into a specific behavioral choice.
Keywords: perceptual decision-making; evidence accumula-
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Introduction

Perceptual decisions are often thought to involve integrating
sensory evidence over time into a Decision Variable (DV) un-
til a threshold is met, triggering a response (Ratcliff & McK-
oon, 2008). This framework, often formalized by the Drift Dif-
fusion Model (DDM), explains behavior well in reaction time
(RT) paradigms where subjects control the stimulus duration.

However, sensory information in natural settings is often
transient. What mechanisms govern choice when the stim-
ulus terminates before a decision bound is reached? Almost
universally, it has been assumed that decision-makers will, in
these conditions, choose the option to which the DV is closest
when evidence is terminated (Green, Swets, et al., 1966; Rat-
cliff, 1980). However, the empirical validity of this rule has not
been scrutinized against alternatives. We addressed this by
experimentally limiting the sound duration (SDmax) in a well-
characterized rat auditory lateralization task and using compu-
tational modeling to infer the underlying decision commitment
rules.

Methods

We reproduced an auditory lateralization task in freely moving
rats (Pardo-Vazquez et al., 2019), in which animals (n=6) dis-
criminate Inter-Aural Level Differences -ILDs- (£1 to 8 dB) at
different Average Binaural Levels -ABLs- (20, 40, 60 dB SPL).
We collected a larger dataset with more maximum sound du-
rations (15, 30, 60, 120, 240, 480 ms), randomly interleaved

with standard RT trials where the sound terminated upon re-
sponse. RTs are always determined by the animals leaving
the central port, regardless of SDmax.

Behavioral data (choices, RTs) were analyzed across con-
ditions. We employed an adapted DDM framework incorpo-
rating parallel proactive (anticipatory) and reactive (stimulus-
driven) processes that race to trigger a response (Hernandez-
Navarro, Hermoso-Mendizabal, Duque, De la Rocha, & Hyafil,
2021). Using parameters constrained by fitting the RT tri-
als, we obtained the performance on SDmax trials under dif-
ferent hypotheses about post-stimulus evidence processing
(e.g., immediate stop, continued integration with decay) and
choice readout rules for sub-threshold evidence states (e.g.,
based on sign of DV, random choice). Model fits were com-
pared to empirical psychometric and tachometric (accuracy
conditioned on RT) functions.

Results

Limiting stimulus duration significantly impacted performance.
Accuracy decreased for shorter SDmax values, in a man-
ner dependent on the overall sound intensity — performance
dropped more severely for quieter sounds (lower ABLs), re-
producing the results of (Pardo-Vazquez et al., 2019) (Fig 1C).
Nonetheless, accuracy remained well above chance even for
the briefest stimuli (15 ms), suggesting that some form of evi-
dence processing might be taking place post-offset. Our focus
was to capture this accuracy profile at the level of psychomet-
rics and tachometric functions (Methods).

Computational modeling tested several plausible mecha-
nisms for decision commitment after stimulus termination (Fig
1B). Models assuming a simple readout of the DV’s sign at
SDmax plus delays failed to replicate the observed behavior
(Fig. 1 D1). The data were best explained by a model incor-
porating two key features.

First, there is post-offset integration: following the sen-
sory delay, the decision variable continues to evolve for an
extended window (Fig 1B, 3), driven by a decaying trace of
the sensory evidence (approximated as exponential decay).
This allows the DV to sometimes reach a bound even after the
stimulus ends, explaining the relatively high accuracy. How-
ever, this feature alone overestimates accuracy, particularly
by missing the decline of the tachometric (Fig. 1 D2).

Thus, we added a second feature, a random readout
rule: if the decision bound is not reached by the end of this
post-offset integration period, the model assumes the animal
makes a random choice, independent of the final value of the
DV. This combination captures well the data (Fig. 1 D3). Cru-
cially, the model parameters fit to just SDmax = 30ms general-
ize remarkably well to the full set of durations and ABLs (Fig.
1E).

Discussion

This study examines the mechanisms of decision commitment
when sensory information is available only briefly. By exper-
imentally limiting sound duration in an auditory lateralization
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Figure 1: Task, empirical data, and model fits for short-duration stimuli. (A) Schematic of the 2AFC auditory lateralization
task. Rats initiated trials at a center port and reported the side (left/right) with the louder sound at a side port. (B) Simple model
schematic, highlighting the elements to be explored. (C) Empirical accuracy breakdown for short stimuli. Proportion correct
versus SDmax for different ILDs (colors) and ABLs (different panels). Solid lines show the model fits as in E. (D) Model fits (solid
lines) to psychometric data (middle column, markers) and tachometric data (right column, jagged lines), for an example with
SDmax = 30ms and ABL = 20 dB SPL. Left column represents the firing rate of sensory neurons.(D1) Model with instanteneous
decay and sign-based choice readout. (D2) Model with exponential decay and sign-based choice readout. (D3) Model with
exponential decay and random choice readout. (E) With the same parameters as in C3, the model generalizes to the tachometric

data for all ABLs and SDmax values.

task, we created conditions where decisions often must be
made based on incomplete evidence accumulation, and our
focus is on how the final choice is determined in these sce-
narios.

Our findings challenge simple readout models (like SDT
or sign-based DDM readout at offset). The relatively high
accuracy maintained even for short stimuli, coupled with re-
sponses often occurring well after sound offset, points at the
involvement of post-offset evidence integration, likely reflect-
ing persistent neural activity in addition to sensory/motor de-
lays (Hartley, Dahmen, King, & Schnupp, 2011; Takahashi,
Nakao, & Kaga, 2004).

Crucially, our computational modeling indicates that reach-
ing a decision bound is a prerequisite for evidence to guide
choice in this task. =~ When accumulation remains sub-
threshold, choices appear to default to random, irrespective
of the final evidence state. Decision bounds thus emerge not
merely as mechanisms controlling the speed-accuracy trade-

off, but as essential gates determining whether accumulated
evidence translates into directed action. This quantitative
framework reveals thus a critical mechanism underlying de-
cision commitment, particularly when choices must be formed
from temporally limited information.
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