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Abstract
Large language models (LLMs) generate representations
that effectively predict brain responses to natural lan-
guage, yet the specific circuits within LLMs that drive
this alignment remain largely unexplored. We here ap-
ply techniques from mechanistic interpretability (MI) to
identify LLM circuits (i.e., attention heads) causally rel-
evant to sentiment processing and assess their impact
on LLM–brain alignment. Our results show that removing
sentiment-related attention heads leads to a greater de-
crease in alignment with language-processing brain re-
gions compared to random head removal, although this
difference does not reach statistical significance. Ongo-
ing work aims to further improve LLM circuit identification
in naturalistic settings, enabling more precise mapping
of circuits to plausible brain mechanisms and ultimately
providing deeper insights into LLM–brain alignment.
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Introduction
Large language models (LLMs) excel at generating rich rep-
resentations of natural language, achieving state-of-the-art
performance across NLP tasks while also showing promis-
ing alignment with human brain responses during language
processing (Toneva & Wehbe, 2019; Schrimpf et al., 2021;
Caucheteux & King, 2022; Goldstein et al., 2022). This align-
ment—where model activations predict neural activity pat-
terns—suggests that LLMs may capture some computational
principles of human language processing. However, the spe-
cific circuits within these models that give rise to brain-like
representations remain poorly characterized, limiting them as
computational proxies for studying neural language process-
ing (Tuckute et al., 2024).

Mechanistic interpretability (MI) offers a promising ap-
proach to address this limitation by uncovering the internal
workings of neural networks (Cammarata et al., 2020; El-
hage et al., 2021). This emerging field examines model
weights and activations to identify specific computational com-
ponents—such as attention heads—that implement particular
behaviors (Hanna et al., 2023; Olsson et al., 2022). In this
paper, we investigate whether these MI techniques can be
adapted to identify circuits (i.e., attention heads) in LLMs that
causally contribute to their alignment with brain activity.

We focus on sentiment as an ideal test case , as it is a per-
vasive feature of natural language processed by both humans
and LLMs. Recent work by Tigges et al. has demonstrated
that sentiment is represented linearly across various LLMs: a
subset of attention heads encodes sentiment along a single
direction, with opposing extremes representing positive and
negative sentiment. Critically, ablating these heads causes
damage to LLMs’ ability to perform sentiment-related tasks.

Building on these findings, we first examine whether MI ap-
proaches—typically applied to cherry-picked toy tasks—can
handle complex naturalistic language stimuli central to neu-
roscience research. We then identify sentiment-relevant at-

tention heads in a range of language models. Lastly, we test
a specific causal hypothesis: if sentiment-processing atten-
tion heads in LLMs contribute to brain alignment, selectively
patching them with counterfactual activations should reduce
LLM-brain alignment more than patching randomly selected
heads.

Methods
Datasets and models
To extend the circuit identification approach to a naturalistic
setting, we construct a corrupted narrative dataset HarryPot-
terSentiment based on the Harry Potter chapter that is used
as stimuli in the fMRI experiments (Wehbe et al., 2014). Our
dataset includes 92 examples, such as:

”Harry had never believed he would meet a boy he hated
more than Dudley.”
”Harry had never believed he would meet a boy he loved
more than Dudley.”

We label each sentence and its counterpart as ”positive” or
”negative”. Since we are constrained to using the same text
as fMRI stimuli, we ended up with an imbalanced dataset:
29 ”positive” and 63 ”negative” labels. Our experiments use
GPT2 Small, and two task-tuned alternatives: sentiment-
tuned GPT21 trained on tweet sentiment extraction dataset
2, and summarization-tuned GPT2 trained on CNN news3. To
evaluate model accuracies, we use the following template:

”Rate the sentiment of this sentence as positive or nega-
tive: [sentence]. The sentiment of this sentence is [model
answer]”

If the logits for the correct label are higher than for the wrong
label, we count it as a correct answer, and then sum up the
number of correct guesses over the whole dataset for each
model to arrive at model accuracy.

Identifying attention heads and causal evaluation
We use activation patching (Meng et al., 2022), a causal in-
tervention technique that precisely identifies which subset of
attention heads is responsible for encoding some type of in-
formation—for example, sentiment information. For our Har-
ryPotterSentiment dataset, we perform forward passes with
both the original and distorted texts, storing their activations in
clean and corrupted caches, respectively. By iteratively patch-
ing activations from the distorted text back to the original text
for each model component, we observe how this affects the
model’s predictions (i.e., measuring the accuracy drop on the
Harry Potter dataset), thereby revealing which head is most
important for sentiment classification. We select heads that

1https://huggingface.co/riturajpandey739/gpt2
-sentiment-analysis-tweets

2https://huggingface.co/datasets/mteb/tweet
sentiment extraction

3https://huggingface.co/gavin124/gpt2-finetuned
-cnn-summarization-v2

https://huggingface.co/riturajpandey739/gpt2-sentiment-analysis-tweets
https://huggingface.co/riturajpandey739/gpt2-sentiment-analysis-tweets
https://huggingface.co/datasets/mteb/tweet_sentiment_extraction
https://huggingface.co/datasets/mteb/tweet_sentiment_extraction
https://huggingface.co/gavin124/gpt2-finetuned-cnn-summarization-v2
https://huggingface.co/gavin124/gpt2-finetuned-cnn-summarization-v2


lead to a more than 5% drop in the original accuracy, and we
refer to them as ”circuits”. The 5% threshold is inspired by
Tigges et al., where they use the threshold of 5%-or-greater
damage to the logit difference. Notably, we patch all sentence
tokens, irrespective of whether the token expresses a senti-
ment.

LLM-brain encoding

We use the standard brain recordings of 8 subjects reading
Harry Potter (Wehbe et al., 2014), sampled at a TR of 1.49
seconds per session, capturing activity levels of all voxels
(around 28000). We build an encoding model from the last
layer to predict brain matrices of participants reading Harry
Potter, using ridge-regularized linear functions. After training
through 4-fold cross-validation with nested parameter selec-
tion, we evaluate using voxel-based mean Pearson correlation
between predicted and actual fMRI values.

Results

Finding and evaluating sentiment-relevant circuits

We begin by evaluating the models’ baseline performance on
HarryPotterSentiment dataset. Figure 1 (left) shows that all
models perform poorly in a naturalistic setting and achieve low
baseline accuracies, with GPT2 Small obtaining the highest
accuracy of 64 out of 92. This might be because we have
an imbalanced dataset, and GPT2 Small seems to have a
bias towards the negative class (87/92 ”negative” predictions),
whereas other models seem to be biased towards the posi-
tive class (78/92 ”positive” predictions for sentiment-tuned and
79/92 for summarization-tuned models).

However, we assume that the relative drop in accuracy af-
ter activation patching is more interpretable than the baseline
accuracy, since it allows us to compare model performance
before and after intervention. Our results support this: patch-
ing individual attention heads in GPT2 Small did not affect
task accuracy, whereas in other models, modifying specific
heads led to a notable performance drop (e.g., head 7.5 in
GPT2 Sentiment and head 9.2 in GPT2 Summarization). We
hypothesize that this is because sentiment information is not
localized to a single attention head in the pre-trained model,
whereas in task-tuned models, it seems to be concentrated in
a few heads. Patching all identified circuits in GPT2 Sentiment
led to the largest performance drop—approximately a 70% de-
crease from the original accuracy—indicating that these atten-
tion heads encode information relevant to sentiment analysis.
Figure 1 (right) illustrates the accuracy drop caused by patch-
ing each individual head in the GPT2 Sentiment model. Since
our results show that activation patching can most notably dis-
rupt model performance for GPT2 Sentiment, we chose to pro-
ceed with this model for brain encoding.

Brain encoding with sentiment-relevant circuits

To test whether sentiment-relevant attention heads in GPT2
Sentiment contribute to brain alignment, we compare align-
ment between brain activations encoded in three conditions:

Figure 1: Left: Model performance for three models before
and after activation patching. Right: Breakdown of accuracy
drop by individual attention head in GPT2 Sentiment.

Figure 2: Results for brain encoding averaged over 8 subjects.

using the original model embeddings, and when circuits or
random heads are patched with counterfactual dataset activa-
tions. In the random patching condition, we select the same
number of heads from the same layers as the identified cir-
cuits. Figure 1 (left: green bar) shows that patching random
attention heads does not result in a meaningful performance
drop on the task.

Figure 2 shows the contrast between brain alignment
scores in the language network4 across conditions. As hy-
pothesized, we observe that alignment decreases more after
patching the sentiment-relevant heads than after patching ran-
dom heads. However, these results were not statistically sig-
nificant, possibly due to incorrect circuits identification or the
selection of inappropriate brain regions. Contrary to expec-
tations, patching random heads slightly increased brain align-
ment, reaching statistical significance. In the future, we aim to
explore this phenomenon in greater depth.

Limitations and future work
As the next step, we plan to further improve circuit identifi-
cation in naturalistic settings by fine-tuning LLMs with narra-
tive data. While we focus the sentiment analysis task in this
paper, we believe the approach could be extended to other
NLP tasks, and aim to explore them. We also aim to extend
our analysis to other naturalistic datasets, such as Narratives
(Nastase et al., 2021), expand the dataset, and the range of
studied models.

4The following regions were used: ’PostTemp’, ’AntTemp’, ’Angu-
larG’, ’IFG’, ’MFG’, ’IFGorb’, ’pCingulate’, ’dmpfc
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