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Abstract

How can feedback improve learning outcomes? Tradi-
tionally, feedback signals are thought to directly drive pa-
rameter (synaptic) changes. Yet, biophysically, the same
signals also affect the activity of neurons. Here, we use
this observation to develop a new algorithm termed er-
ror forcing (EF) for learning in recurrent neural networks,
where feedback influences both synaptic plasticity and
the network state. We geometrically contrast our ap-
proach with the established teacher forcing framework,
and further provide an interpretation of its function from a
Bayesian standpoint. EF learning outperforms traditional
approaches in scenarios with temporally sparse feedback
when the output is weakly constrained by the task. These
benefits generalize across tasks and are maintained in a
biologically-constrained approximation of error forcing.
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Introduction

Feedback signals play a dual role in learning: while conven-
tional models use them primarily to induce synaptic changes
(Werbos, 1990), they can also guide neural activity toward an
optimal manifold for task performance, which in turn guides
local synaptic plasticity to update the weights (Manchev &
Spratling, 2020). Building on previous control-based methods
such as teacher forcing (TF) (Williams & Zipser, 1989), and
inspired by effects of feedback signals modulating synaptic
weights and neuronal activities in the brain, here we propose
error forcing (EF), a simple yet effective learning mechanism
for recurrent neural networks (RNNs).

Background

Consider the general formulation of a discrete-time RNN with
a linear decoder:

r; =Fo(r;_1,%;), yr = Wory, (1)
where r, € RY is the hidden state, x; € R the input, and
y; € R™ the output. Parameters 8 and ¢ define the recur-
rent dynamics and decoder, respectively. Minimizing the error
between network outputs and target y; requires computing

the derivative of the loss with respect to network parameters
0. This is typically achieved by backpropagation through time
(BPTT), or online approximations of it, aimed to make learn-
ing more computationally efficient or more biologically plau-
sible (Marschall, Cho, & Savin, 2020). BPTT suffers from
well-known issues such as vanishing and exploding gradients
(Pascanu, Mikolov, & Bengio, 2013), which motivate the de-
velopment of alternative approaches such as teacher forcing
(Doya, 1992).

In its generalized version (Hess, Monfared, Brenner, &
Durstewitz, 2023), teacher forcing (TF) pushes neuron activity
towards states that would correspond to correct outputs:

f‘[ = (l - OL)I‘; +(xl_'[7 (2)
r; = Fp(Fr—1,%:), 3)

where r; denotes natural RNN state, r; is the target (teacher)
state, and their linear interpolation leads to the forced dy-
namics ¥;, with 0 < a < 1. When o = 0, the method re-
duces to BPTT. When states are partially forced, the computa-
tional graph for the network dynamics changes, which in turn
changes the BPTT computations; well-behaved gradients can
thus be ensured by a judicious selection of a.

In most practical scenarios, the dimensionality of the output
is smaller than network size, which implies a manifold of pos-
sible neural states with zero error. To pick one specific target
on that manifold, TF uses a minimum-norm mapping from the
low-dimensional output space to activity space, given by the
decoder pseudoinverse, F"" = Wgy;“. EF proposes an alter-
native way to choose this target, as the closest point on the
manifold from the current network state.
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Figure 1: Geometric explanation of differences between no
forcing (a), teacher forcing (b), and error forcing (c); oo = 1.



Approach

Geometric perspective: It is not a priori clear why one
should use the minimum-norm solution, given the existence
of infinitely many alternatives. In fact, TF quenches network
network variability outside of the decoder manifold and can in-
duce large perturbations to the network state, both of which
potentially disrupt learning. To understand why, consider a
toy RNN example with 2 hidden neurons and a 1-dimensional
output. For visualization, assume constant target states y*
(Figure 1, cyan line). When states are not forced, the RNN
runs freely (Figure 1a). With full forcing (a0 = 1), using the
minimum-norm solution (white circle), the RNN is driven to
the teacher state, and the next step follows Eq. 3. Since the
output is constant, the same teacher state is used at each
step, causing the RNN to repeat this pattern (Figure 1b), lim-
iting the exploration of the neural space during learning. In
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Figure 2: Comparison of task performance (a,c) and learning
speed (b,d) for EF-BPTT relative to other approaches for de-
layed XOR and cued response evidence integration; oo = 0.5.

contrast, EF simply selects the teacher state such that r; is
the orthogonal projection of r; onto the manifold of possible
optimal responses (Figure 1c):

i:t - r, + OCW$eh (4)

where ¢; =y; —y;. This lets the RNN explore the N dimen-
sional space. We call this mechanism EF-BPPT, when BPTT
is used for synaptic updates.

Bayesian perspective: If we replace the deterministic RNN
dynamics (Eq.1) with a Gaussian state-space model (by the
addition of gaussian noise with variance 627, for latents and
ngo for output), we are also able to show that greedily infer-
ring the optimal state space correction 7, given target output
y: via maximum a posteriori filtering produces nearly identi-
cal state space dynamics as the deterministic case, while still
allowing for BPTT learning. The stochastic EF dynamics are
given by:

) -1
~ ()
B =ty + W, (Wq,wg + G21> e (5)

This perspective connects EF to the Extended Kalman Filter,
and allows for theoretically grounded stochastic EF training.
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Figure 3: Task performance and learning speed for variants of
EF-RFLO for delayed XOR.

Numerical Results

EF-BPTT: We compared EF-BPTT with standard BPTT and
TF-BPTT on two tasks which require filtering past inputs and
mapping the result into a one-dimensional output at particular
moments in time— delayed XOR and a version of evidence
accumulation (Liu, Smith, Mihalas, Shea-Brown, & Simbdil,
2021). In both tasks, the target reporting was sparse in time
(by using an explicit report cue as a network input, and rel-
atively long delays), which makes learning difficult. For each
task and learning mechanism, we further varied task difficulty
(by increasing the delay) and measured the fraction of net-
works (out of 20 runs) that successfully learn to perform the
task with no errors (Figure 2a,c) and the number of epochs
required for convergence (Figure 2b,d), with the optimal o
determined via grid search. Overall, EF-BPTT outperformed
the other methods by converging faster and achieving higher
success rates. Vanilla RNNs with EF-BPTT also outper-
formed more complex architectures engineered in service of
well-behaved gradients (GRUs and LSTMs, Figure 2c¢,d) and
trained with BPTT, suggesting that EF may be useful for re-
verse engineering neural dynamics supporting cognitive tasks
with long temporal horizons.

Bio-plausible EF: To test EF in a more biologically realistic
setting, we replaced the BPTT parameter updates with ran-
dom feedback local online (RFLO) learning (Murray, 2019),
a biologically plausible online approximation of BPTT (same
general experimental setup). Error forcing improved the
performance and convergence of local learning rules (Fig-
ure 3a,b). Beyond the plausibility of parameter updates, EF
itself requires knowledge of the network readout for the forc-
ing matrix (Eq.4). To enforce locality, we replaced this ide-
alized solution with a random forcing matrix —either fixed or
learnable. With fixed projections, the decoder aligned with the



feedback synapses; when learned, both the projection and de-
coder aligned, resulting in higher similarity (Figure 3c) and still
retain improved task performance, suggesting that EF biolog-
ical plausibility can be achieved with minimal cost in terms of
the quality of learning.

Discussion

In this work, we introduced error forcing as a geometrically
and probabilistically interpretable method to stabilize and im-
prove learning in RNNs. We demonstrated its benefits in
tasks involving long-time dependencies and showed that bio-
plausible approximations of EF benefit local learning rules,
suggesting that the brain could leverage synergistic state-
weight updates to both learn and improve instantaneous task
performance.
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