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Abstract

While it has been suggested that gamma (∼40Hz) oscil-
lations are an important driver of the spontaneous dy-
namics of the large-scale cortical networks, whole-brain
models often neglect fast excitatory AMPA synapses, re-
sponsible for the generation of gamma rhythms through
reciprocal excitatory-inhibitory (E-I) interactions. Impor-
tantly, these interactions are balanced through home-
ostatic plasticity mechanisms, ensuring stable activity.
However, the joint role of gamma oscillations and E-I bal-
ance in supporting large-scale cortical dynamics has not
been tested systematically. Therefore, we built a large-
scale model of the human cortex with E-I homeostasis
and fast and slow excitation through AMPA and NMDA re-
ceptors, respectively. By selectively knocking out fast ex-
citation and E-I homeostasis, we demonstrate that mod-
els with both features better reproduce the resting-state
dynamics of the human cortex, measured through ultra-
slow blood- oxygenation-level–dependent (BOLD) sig-
nals. While E- I homeostasis ensures the emergence of
empirical connectivity networks, their dynamic aspect is
best captured in models with gamma oscillations gener-
ated by AMPA-mediated excitation. Therefore, our results
help elucidate the emergence of collective dynamics in
the cortex, advancing balanced gamma oscillations as
a fundamental generative mechanism behind ultra-slow
fluctuations of cortical activity
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Background

The rich fluctuations of resting-state BOLD signals in the cor-
tex are an example of the emergence of complex collective
dynamics in networks of relatively simple units. While the key
principles underlying their emergence are not yet understood,
BOLD fluctuations have also been associated with gamma
rhythms (∼40 Hz) (Logothetis et al., 2001; Niessing et al.,
2005; Schölvinck et al., 2010). Furthermore, computational
studies have demonstrated that models with gamma oscilla-
tions generated by balanced E-I interactions can reproduce
resting-state cortical dynamics (Páscoa dos Santos et al.,
2023; Castaldo et al., 2023; Páscoa dos Santos & Verschure,
2025b). However, while this process of gamma generation re-
quires fast excitation through AMPA receptors (Wang, 2010;
Buzsáki & Wang, 2012), these are not commonly accounted
for in large-scale models of BOLD signals in the cortex (Deco
et al., 2014, 2021; Naskar et al., 2021). For this reason, no
study has systematically explored how fast and slow excitation
shape the collective dynamics of the cortex. With that in mind,
and given the role of E-I homeostasis in regulating edge-of-
bifurcation gamma oscillations (Freeman, 2005; Páscoa dos
Santos & Verschure, 2025a, 2025b), we hypothesize that the
interaction between gamma oscillations and E-I balance un-
derpins the spontaneous collective dynamics of the cortex.

Results
To test our hypothesis, we developed a large-scale model
based on empirical structural connectivity data (Fig. 1A) and
the reduced Wong-Wang model (Wong & Wang, 2006) with
fast (τ=4ms) AMPA and slow (τ=100ms) NMDA synapses
(Fig. 1A). Local parameters were adjusted to reproduce the
micrcocircuitry of layer 2/3 circuits (Jiang et al., 2024), the
relative strength of AMPA and NMDA currents (Myme et al.,
2003), and the spontaneous firing rates of pyramidal (PY)
(∼5Hz) and fast-spiking cells (∼17Hz) (Wilson et al., 1994).
E-I homeostasis was implemented through the regulation of
excitatory and inhibitory synapses and pyramidal cell excitabil-
ity (Turrigiano, 2011; Wen & Turrigiano, 2024; Páscoa dos
Santos & Verschure, 2025a), maintaining PY firing close to
5 Hz while displaying noise-driven oscillations (Fig. 1B)

We then analyze the performance of models with selectively
removed AMPA receptors, E-I homeostasis, or both. In each
case, we apply a Bayesian optimization algorithm (Hadida et
al., 2018) to find the combination of hyper-parameters (global
and local coupling) optimizing the fit to empirical functional
connectivity (FC) and FC (dynamics), evaluated by a cross-
feature score, detailed in Páscoa dos Santos and Verschure
(2025b). Our results show that the network with AMPA and
E-I homeostasis achieves the best cross-feature fitting score,
demonstrating the importance of balanced gamma oscillations
(Fig. 2A). More specifically, balancing excitation and inhibi-
tion substantially improves the fit to FC (Fig. 2A and B). Con-
versely, while including AMPA of synapses does not contribute
to the emergence of empirical FC networks (Fig. 2A), it signifi-
cantly improves the fit to FC dynamics in models both with and
without homeostasis. Nonetheless, E-I homeostasis is neces-
sary to replicate the large-scale co-activation events observed
in empirical data (Fig. 2B), suggesting a contribution of E-I
homeostasis for collective behaviors beyond FC dynamics.

Main Conclusions
Our results demonstrate the fundamental role of gamma oscil-
lations generated by balanced E-I interactions in the ultra-slow
fluctuations of BOLD signals. Therefore, we advance edge-
of-bifurcation gamma oscillations as one of the fundamental
generative mechanisms of resting-state cortical dynamics.



Figure 1: Model Architecture A) E-I circuits constrained by empirical structural connectivity data. Excitation operates through
fast (AMPA) and slow (NMDA) synapses. E-I balance is maintained by three distinct homeostatic mechanisms (Páscoa dos
Santos & Verschure, 2025a). B) Firing rate of excitatory (red) and inhibitory (blue) populations in the occipital (top) and frontal
(bottom) lobes. On the right, we show the power spectrum of an LFP proxy computed from post-synaptic currents.

Figure 2: Model Performance A) Fitting scores of models with or without AMPA receptors and E-I homeostasis. (Left) Cross-
feature fitting score, aggregating the correlation coefficient and mean-squared error between FC matrices and the KS-difference
between correlations in the FC dynamics matrices. The black dashed line and shaded area represent the mean and standard
deviation of scores obtained from 20 random BOLD time series (Middle) Pearson’s correlation coefficient between FC matrices
(Right) KS-distance between FCD distributions. Distributions correspond to 20 simulations. Brackets represent a significant
difference (p<0.05) between samples from a Mann-Whitney U-test. All p-values were corrected for multiple comparisons with
FDR correction. B) Features of empirical and simulated data (Top) 2 minutes of z-scored and band-pass filtered BOLD signals
(Middle) Average FC matrices (Bottom) FCD distributions. Simulated distributions (blue) are plotted with the empirical distribution
(orange) for comparison. Insets show the matrix of correlations between FC matrices computed from sliding windows of ∼60 s,
from which the distributions are then drawn (see Páscoa dos Santos and Verschure (2025b))
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Buzsáki, G., & Wang, X.-J. (2012). Mechanisms of Gamma Oscillations. Annual review of neuroscience, 35, 203–225. Retrieved
2022-06-28, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049541/ doi: 10.1146/annurev-neuro-062111-
150444
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