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Abstract
How the brain makes sense of the constant stream of
visual information it receives largely remains a mystery.
One prominent idea is that it evolved specialized path-
ways for sparse cortical engagement, and those can be
accurately captured with handcrafted features; however,
deep neural network (DNN) features overall align bet-
ter with brain representations. In this work we study
the brain alignment of a multi-pathway DNN that lever-
ages compressed video formats, and partition the vari-
ance captured between its three modular components
across visual brain regions recorded with fMRI during
video stimuli. We find that its components map well to
known brain pathways, and that it captures overall more
variance than a 3D convolutional network. Achieved us-
ing only existing features in the compressed format, this
points to the ineffectiveness of conventional full-frame
processing for explaining brain responses to dynamic
stimuli and to compression as a potential solution.
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Introduction
In recent years, traditional computational models of human vi-
sion using theory-driven hand-crafted features are rivaled by
deep neural networks (DNNs) with learned task-optimized fea-
tures. Hand-crafted video features distinctly map to different
pathways in visual cortex during viewing of natural dynamic
stimuli (Bartels, Zeki, & Logothetis, 2008; Nishimoto & Gallant,
2011), but currently DNN features achieve the highest align-
ment to brain responses in static image stimuli benchmarks
(Schrimpf et al., 2018; Kriegeskorte, 2015) and for dynamic
stimuli they also align differently depending on their temporal
modeling (Sartzetaki, Roig, Snoek, & Groen, 2025). However,
DNNs trained on top of hand-crafted features such as optical
flow still explain unique variance compared to larger end-to-
end networks (Karimi & Anzellotti, 2024).

Accurate optical flow computation for every pixel or sepa-
rate processing of all RGB frames in a video are implausible
in both biological and artificial intelligence, as for any limited-
capacity system efficient data compression is needed, and
feasible due to the rich statistical structure of most signals
(Bates & Jacobs, 2020). Eliminating redundancy in sensory
information results in sparse coding engaging only a small
portion of cortex simultaneously (Olshausen & Field, 2004),
and for prolonged static stimuli we also observe response re-
ductions (Zhou, Benson, Kay, & Winawer, 2018; Groen et al.,
2022; Brands et al., 2024) reflecting compressive temporal
summation. In computer vision, compressed action recogni-
tion models (Wu et al., 2018; Chen & Ho, 2022) take advan-
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Figure 1: A. Information flow in the compressed action recog-
nition model, CoViAR (Wu et al., 2018), and B. a 3D CNN.
C. Pipeline for Variance Partitioning between CoViAR’s three
modular CNNs on video fMRI data (Lahner et al., 2024).

tage of the commonly used storing and transmission format,
MPEG4 compression. They dedicate less resources to pro-
cessing full RGB I-frames, and also compute representations
on the intermediate P-frames, comprised of motion vectors
and residuals (proxies for optical flow and edge features).

Motivated by this, here we compute the representational
alignment of one such model, CoViAR (Wu et al., 2018), to
the human brain watching videos, and compare to 3D con-
volutional models as baseline. We find that it explains more
unique variance than a 3DCNN and that its modular compo-
nents neatly map to the respective functional brain pathways.

Methods
Neural dataset We employ the Bold Moments Dataset (BMD)
(Lahner et al., 2024) consisting of whole-brain 3T fMRI record-
ings from 10 subjects watching 1102 3s videos from the Mo-
ments in Time (Monfort et al., 2019) video dataset. For each
subject, 1000 videos were shown for 3 repetitions whereas
102 videos were shown for 10 repetitions - here we use this
latter subset (whose videos are sensibly representative of the
whole set). We use preprocessed data provided by Lahner et
al. (2024), concatenating voxels for each available brain ROI
across hemispheres, as well as dorsal and ventral V1 and V2.

Model training and feature extraction We train the mod-
els of the three input streams (shown in Fig. 11), RGB
(Resnet-152), Motion vectors (Resnet-18), and Residuals
(Resnet-18), for action recognition on the dataset UCF101
(Soomro, Zamir, & Shah, 2012) using the codebase and hy-
perparameters provided in Wu et al. (2018), and successfully
reproduce their results. The C3D and TSM R50 MobileOne

1Figure parts A and B adapted from (Wu et al., 2018) and
(Simonyan & Zisserman, 2014) respectively.
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Figure 2: A. Variance Partitioning (VP) between the CoViAR
components in different ROIs displayed as Euler diagrams
(left) and r2 score distributions across participants (right). B.
VP between CoViAR and C3D, as well as a more high-aligned
3D CNN. Stars indicate pairwise significant differences.

models are ported from the mmaction22 library, trained on
UCF101 and Kinetics-400 respectively. Each model expects
a clip of specific length, so we average the features across all
sub-clips of a video. We extract features from all higher-level
blocks in the models, also including the final fully connected
classification layer, and flatten the features after extraction to
produce a single one-dimensional feature vector per layer.

Variance Partitioning on RDMs We construct Represen-
tational Dissimilarity Matrices (RDMs) (Kriegeskorte, Mur, &
Bandettini, 2008) with Pearson correlation from the voxel vec-
tors of each ROI and subject (after averaging across repeti-
tions), and from the feature vectors of each model layer (after
reducing the dimensionality to 100PCs with Principal Compo-
nent Analysis). We choose the model layer RDM that achieves
the highest average Spearman correlation with the sub-
ject RDMs to perform Variance Partitioning (VP) (Legendre,
2008). For VP between three models we fit a linear regression
from each model RDM m to each subject RDM and compute
the r2 score Rm, and a linear regression from each combina-
tion of model RDMs m, n to each subject RDM and compute
the r2 scores Rmn and R123. We then partition the variance
to obtain shared and unique variance partitions as shown in
Fig. 1.C. We utilize the Net2Brain python library (Bersch et al.,
2025) for parts of the pipeline, and the eulerAPE program3 for
the diagrams of Fig. 2. We compute statistical significance of
variance distributions against zero with a one-sample t-test,
and pairwise significance between two variance distributions
with Welch’s t-test.

2https://mmaction2.readthedocs.io
3https://www.eulerdiagrams.com/eulerAPE/v2/

Results
In Fig. 2.A(left) we show results for Variance Partitioning
(VP) between the RGB, Motion Vector, and Residuals CNN
streams of the CoViAR model in the form of Euler (elliptical
Venn) diagrams, for selected brain ROIs from the Early Visual
Cortex (EVC), Ventral stream, and Dorsal stream. Partitions
are shown in percentages of the total variance explained by
all the models together (the union of the ellipses). In the EVC,
the Residuals CNN uniquely accounts for the largest amount
of variance in V1 (33.9%), followed by the variance shared
between the Residuals and the RGB CNN (31.9%). In the
Ventral stream, similar amounts of variance are explained by
the shared contributions of all three CNNs (26%), the unique
contributions of the RGB CNN (23%), and the shared contri-
butions of the Residuals and the RGB CNNs (22%). In the
Dorsal stream, the Motion Vector CNN takes a clear lead in
uniquely explaining the most variance (38%), followed by the
variance shared between all three CNNs (26.8%). These re-
sults are shown in more detail in Fig. 2.A(right), including the
distributions of r2 scores across subjects and in all ROIs, as
well as selected pairwise significances. All score distributions
are significant against zero. The total variance accounted for
by all partitions together amounts to 1/3− 1/2 of the lower
noise ceiling present in the data, depending on the ROI.

In Fig. 2.B we show results for two 4-way VP analyses,
between the three CoViAR models and two 3DCNNs, in the
broad ROI BMDgeneral (Lahner et al., 2024). We first observe
that the overall variance explained by all three CoViAR CNNs
(R123) is significantly higher (p=0.009) than that explained by
the C3D model (R4). We further investigate by subtracting any
shared variance between the overall CoViAR variance and
C3D, i.e. R123 − y14 − y24 − y34 + y124 + y134 + y234 − y1234,
and comparing to the unique variance of C3D y4, and there
find an even larger advantage of CoViAR. Interestingly, we
find the same when repeating the VP for TSM R50 MobileOne,
shown as highly brain-aligned in Sartzetaki et al. (2025).

Discussion
Leveraging the already available compressed video for-
mat to account for differences between consecutive frames,
CoViAR’s CNN streams for RGB, Motion Vectors, and Resid-
uals map well to human brain regions known for processing
these respective types of information; the EVC’s biggest vari-
ance partition Residuals resemble edge features, the RGB
and Residuals can contribute to object recognition in the Ven-
tral stream, while Motion Vectors can account for dynamic
features found in Dorsal areas. We note a lack of high cor-
tex engagement for uniquely computing RBG features, while
the RGB-only 3DCNN - though computing temporal features
- also fails to capture large unique variance compared to
CoViAR. These results may collectively point to the ineffec-
tiveness of RGB features during dynamic tasks like video-
watching. At the same time, they are the most expensive to
compute of the three, as is 3D convolution compared to 2D,
so a multi-stream solution might naturally emerge for sparsity
and efficiency reasons (Olshausen & Field, 2004).

https://mmaction2.readthedocs.io
https://www.eulerdiagrams.com/eulerAPE/v2/
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