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Abstract 
Speech processing is believed to rely on two 
types of information. First, the predictions, 
which are endogenous and flowing down the 
cortical hierarchy in a top-down manner, and 
second, the prediction errors, computed as the 
difference between the effective and the 
predicted inputs at each stage of the said 
hierarchy, in a bottom-up flow of information. 
The putative role of neural oscillations to 
mediate those signals is still a question of 
debate. Here we recorded intracranial EEG 
activity of 45 epileptic patients, while they 
listened to ecological speech. We used a Large 
Language Model to extract proxies of both 
prediction uncertainty and prediction errors at 
three linguistic levels, phonemes, syllables and 
words. We found that encoding of prediction 
errors and prediction uncertainty peaks 
respectively in high-gamma and beta bands, only 
in Primary Auditory Cortex and Superior 
Temporal Gyrus. 
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Introduction  
 Language processing involves predicting content at 
multiple timescales, encompassing phonemes, 
words, up to sentences (Donhauser & Baillet, 2020; 
Heilbron et al., 2022). Hierarchical Predictive Coding 
suggests that the brain generates predictions and 
estimates prediction errors at each level of the 
processing hierarchy. Advances in electrophysiology 
and Artificial Neural Networks have provided 
detailed insights into neural representations, from 
low-level acoustic features (Yi et al., 2019) to 
semantic representations (Gallant et al., 2016; 
Caucheteux et al., 2023).  

Despite these advancements, the 
mechanisms by which predictions and prediction 
errors are mediated throughout the cortical hierarchy 
during speech processing, and how they are 
encoded within brain activity, remain unresolved. In 
macaque visual  processing, studies have attributed 
gamma (>40Hz) and alpha-beta (12-35Hz) 

frequency bands to prediction errors (feedforward 
signals) and predictions (feedback signals), 
respectively (Bastos et al., 2015). We aim to 
investigate whether this framework applies to 
ecological speech processing in humans.  
 

Methods and Results 
Acquisition. Intracortical EEG data were acquired in 
Hôpital de La Timone’s department of epileptology. 
The locations of the electrode implantations were 
determined solely on clinical grounds. They listened 
to a 10’ story in French. The pool of N=45 subjects 
totalized 6654 contacts-pairs, whose activity was 
downsampled to 100Hz. 
 
Feature engineering. Textual transcription of the 
audio stimulus has been fed into CamemBERT 
(Martin et al., 2019), a LLM trained on French, and 
probability distributions over tokens were extracted. 
We first approximated the prediction errors as the 
average surprisal of tokens composing each word, 
and prediction uncertainty as the mean entropy of 
the probability distributions. Then, phonemic and 
syllabic surprisal and entropy were derived using a 
combination of Lexique (New et al., 2001) (repertoire 
of french words) and Cohort model (Marslen-Wilson 
& Welsh, 1978). This constituted our set of 6 
linguistic predictive features : (word, phoneme, 
syllable) x (surprisal, entropy). 
 
Analysis. We used Temporal Response Function 
(TRF) to estimate the variance of the neural data 
explained by the features of interest via a linear 
ridge regression (Crosse et al., 2016).  Control 
acoustic features encompassed the envelope, the 
absolute value of its derivative, the spectral flux, the 
f0 envelope, and the word, syllable and phoneme 
onsets. 
 
Statistics. We first selected responsive channels by 
computing the absolute performance of a first model 
with control + interest features, and a second model 
with control features only. This yielded a relative 
performance (∆r2), that was compared with the 
chance distribution of relative scores estimated 
through permutations of the features of interest. Only 
the channels whose ∆r² was above the 95th 
percentile in the chance distribution were kept. To 



statistically compare the strength of encoding 
between features of interest, we used a 
Wilcoxon-rank signed test on the model’s relative 
scores at each frequency, p-values were corrected 
against false discoveries (FDR correction). 
 
Broadband encoding. Permutation tests allowed us 
to isolate channels whose broadband activity 
encodes features of interest. We separated two 
‘clusters’ of channels based on the set of features 
that drives the reconstruction accuracy: the first, 
named ‘Acoustic’, is mostly encoding control 
acoustic features, and is located in bilateral Heschl’s 
gyri and in the left Superior Temporal Gyrus. The 
second cluster, named ‘Linguistic’, whose response 
is relatively more driven by the response to features 
of interest, is distributed, and encompasses notably 
the left Medial Temporal Gyrus/Sulcus, Temporal 
Base and Inferior Frontal Gyrus. 
 
Frequency-resolved encoding. As in the 
broadband procedure encoding, we used a TRF 
model to reconstruct neural activity. In this case, the 
analysis was performed 40 times, in order to 
estimate the amplitude of filtered neural data within 
40 frequency bands ranging from 0.1 up until 150Hz. 
Amplitude was extracted using Hilbert transform. 
This procedure led to 1 encoding score by tested 
frequency band and by set of regressors. By 
subtracting the frequency-resolved performance of 
the base model, we obtained the relative 
reconstruction accuracies : the Spectral Encoding 
Profiles. The SEP of either the three linguistic levels 
of speech (phoneme, syllable, word), or the two 
types of linguistic predictive features (entropy, 
surprise) were compared. We observed that: 1. 
Phoneme is the more strongly encoded linguistic 
level, and 2. The SEPs are similar across linguistic 
levels, with encoding peaking at low (<12 Hz) and 
high-gamma (~60–85 Hz) frequencies. In the 
‘Acoustic’ cluster, the distinction proposed in (Bastos 
et al., 2015) seems to hold, as we observed stronger 
encoding for surprise in the high-gamma (~60–85 
Hz; and low-delta, ~1Hz) band) and stronger 
encoding of entropy in the alpha-beta band (~13–16 
Hz; p < .05, FDR-corrected). In the ‘Linguistic’ 
cluster, no relevant distinction appears to be 
encoded in the power of the neural data. 
 

 
Figure 1: Channels encoding linguistic predictive 
features at any level, and their SEPs split 
between ‘Acoustic’ (left) and ‘Linguistic’ (right) 
clusters. A. Repartition of proportions of scaled 
variance explained by predictive linguistic features. 
All represented channels significantly responsive to 
the aforementioned features. B. Top : SEPs 
separated for each linguistic level (regressor set = 
surprisal + entropy). Bottom : SEPs separated 
between surprisal and entropy (regressor set = word 
+ syllable + phoneme). 
 

Discussion 
We first observed that the encoding pattern was 
similar across the spectrum for each linguistic level, 
the phoneme being the most strongly encoded. 
Second, the distinction between a high-level 
prediction uncertainty and a lower-level prediction 
error encoded in distinct frequency bands, as 
proposed by (Bastos et al., 2015) was observed only 
in the ‘Acoustic’ cluster of electrodes.  
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