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Abstract
Computational neuroscience offers a valuable opportu-
nity to understand the neural mechanisms underlying be-
havior. Suppose that you fit a computational model to
behavioral data to generate an individual-specific predic-
tion error regressor. You in turn use this regressor to
model activity in a brain region of interest. What do in-
dividual differences in the resulting regression weights
mean? Typically researchers interpret these individual
differences as differences in neural coding. Yet, in five
scenarios, we illustrate through simulations that such in-
dividual differences may stem from other factors. By ac-
knowledging these alternative interpretations of individ-
ual differences, and by openly sharing reproducible code,
we aim to advance the understanding and interpretation
of individual differences in computational neuroscience.
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Individual Differences in Computational
Neuroscience

Studying individual differences by means of computational
neuroscience has two major advantages: it makes theories
on the origins of individual differences in neural coding explicit
(Guest & Martin, 2021) and it allows researchers to investi-
gate individual differences in neural coding of latent variables
underlying cognitive processes (Hartley & Somerville, 2015).
Many computational neuroscience studies use a so-called
latent-input approach (Turner, Forstmann, Love, Palmeri, &
Van Maanen, 2017). In this approach, a computational model
is fit to the behavioral data, after which a latent variable de-
rived from this model (e.g., a prediction error) is entered as
a predictor in the functional Magnetic Resonance Imaging
(fMRI) analysis. Individual differences in the resulting regres-
sion weights are typically interpreted as individual differences
in neural coding, and subsequently related to factors like age
or socio-economic status. As we illustrate in five scenarios,
the interpretation of individual differences based on these re-
gression weights is anything but straightforward (see also Le-
breton, Bavard, Daunizeau, & Palminteri, 2019).

Take a simple reinforcement-learning task in which partici-
pants repeatedly choose between two stimuli (e.g., a chair and

a clock). After making a choice, the participant experiences
an outcome (e.g., winning or losing a dollar) allowing them
to gradually learn the value of each stimulus. This learned
value V then subsequently guides choice behavior in the
next trial. Formally, this process can be described as follows
(Rescorla & Wagner, 1972): Vchair,i,t+1 = Vchair,i,t +αi ·PEi,t ,
where the prediction error (PE) is the difference between the
observed outcome (O) and the value of the chosen option,
PEi,t = Oi,t −Vchair,i,t , and the learning rate (α) indicates how
fast participants update values based on prediction errors.

The individual-specific prediction error variable can then be
included as a first-level regressor in the fMRI General Linear
Model (GLM) after convolution with a hemodynamic response
function. That is, schematically, neuralsignali,t = φi ·PEi,t +
εi,t , where φ is the neural coding parameter and ε refers to
noise.

Scenario 1: Lack of Individual Differences in
Neural Coding

The first scenario computational neuroscientists may en-
counter is that they find individual differences in learning rates,
but no individual differences in φ. A perhaps intuitive interpre-
tation suggests that if there are individual differences in the
neural signal, these must be reflected in the φi parameter.
However, individual differences can be present in the neural
signal but absent in φi. This is because the neural coding pa-
rameter φi captures the relative size of the neural signal to
the size of the prediction error. As such, even in the absence
of individual differences in the neural coding parameter, dif-
ferences in learning rates lead to differences in prediction er-
ror variance which in turn leads to differences in neural signal
variance. This scenario should thus be interpreted as no indi-
vidual differences in neural coding on top of those observed in
behavior rather than no such differences in neural response.

Scenario 2: Spurious Individual Differences in
Neural Coding due to Neglected Individual
Differences in the Duration of the Neural

Response
A second scenario, also highlighted by Mumford et al. (2024),
occurs when computational neuroscientists overlook individ-



ual differences in the duration of the neural response. Neu-
roscientists typically assume a constant duration in the fMRI
GLM (Grinband, Wager, Lindquist, Ferrera, & Hirsch, 2008).
Yet, a response lasting twice as long generates a neural signal
nearly identical to that of a response twice as strong (Mumford
et al., 2024). As such, when there are individual differences in
the duration of prediction-error related responses, these ap-
pear as individual differences in the strength of prediction-
error coding (i.e., in φi) in the fMRI GLM when duration is
unaccounted for.

Scenario 3: Spurious Individual Differences in
Neural Coding due to Neglected Individual

Differences in Outcome Sensitivity
We now turn to a scenario in which the computational model
is inadequately specified. This third scenario computational
neuroscientists may encounter, concerns individual differ-
ences in outcome sensitivity (not to be confused with inverse
temperatures as discussed in the next scenario). Specifi-
cally, it may be that some participants are more sensitive
to outcomes (e.g., winning or losing a dollar) than others
(Pedersen, Frank, & Biele, 2017). A straightforward way to
implement outcome sensitivity in the computational model is
to introduce an individual-specific outcome sensitivity param-
eter (Huys, Pizzagalli, Bogdan, & Dayan, 2013). This out-
come sensitivity parameter γi weighs the observed outcome:
PEi,t = γi ·Oi,t −Vchair,i,t . From this adjusted equation, it be-
comes clear that the outcome sensitivity parameter γi influ-
ences prediction errors. Simulations (shown in Figure 1A)
confirm that outcome sensitivity affects prediction error vari-
ance. As a result, if a researcher fails to adequately model in-
dividual differences in outcome sensitivity, they will introduce
spurious individual differences in the neural coding parameter
φi (see Figure 1C).
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Figure 1: The effect of outcome sensitivity on prediction error
variance (A), estimated inverse temperature in case of model
misspecification (B), and the estimated neural coding param-
eter in case of model misspecification (C).

Scenario 4: No Spurious Individual Differences
in Neural Coding due to Individual Differences

in Inverse Temperature
Up until now, all scenarios have focused on the learning part
of the reinforcement learning process. Yet, learned values are

used to generate choices. This choice part of the reinforce-
ment learning process can be formally expressed as follows,
Pr(choicei,t = chair) = 1/(1+ e−βi(Vi,t,chair–Vi,t,clock)), in which
the choice probability is determined by the difference between
the values of the two stimuli. The higher the inverse tempera-
ture parameter βi, the more choices are guided by the differ-
ence in the values of the two stimuli. The inverse temperature
does not weigh prediction errors. Accordingly, we observe no
systematic relationship between β and prediction error vari-
ance (Figure 2A). While β can be accurately estimated from
the behavioral data (Figure 2B), it does not influence the esti-
mated neural coding parameter φ (Figure 2C).
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Figure 2: The effect of inverse temperature settings on predic-
tion error variance (A), the estimated inverse temperature (B),
and the estimated neural coding parameter (C).

Scenario 5: Spurious Individual Differences in
Neural Coding due to Neglected Individual

Differences in the Computational Model
In scenario 3, we discussed how inadequate specification of
the computational model, that is, neglecting individual differ-
ences in outcome sensitivity, may induce spurious individual
differences in the neural coding parameter. This fifth scenario,
illustrated in Figure 3 shows how misspecification of the type
of learning rate cause spurious individual differences in the
neural coding parameter respectively.

A) Correct specification B) Misspecification
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Figure 3: When participants truly use different type of learning
rates α but have the same neural coding parameter φ (A),
ignoring individual differences in the type of α causes spurious
individual differences in φ (B).

Concluding Remarks
A computational neuroscience approach to studying the ori-
gins of individual differences has gained increased popular-
ity. We here addressed potential challenges in the interpreta-



tion of individual differences from computational neuroscience
studies by presenting five scenarios that computational neuro-
scientists may encounter. Although we illustrate the scenarios
in a reinforcement-learning context, they arguably generalize
to other computational neuroscience fields adopting a latent
input approach (scenarios 1-2), other choice paradigms (sce-
nario 4), and other models including parameters that affect
regressor variance (scenarios 3 and 5). As such, our results
widely aid the understanding and interpretation of individual
differences in computational neuroscience.
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