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Abstract
Tracking response history and current rewards is critical for
making moral decisions. By integrating fMRI and mouse track-
ing (MT) with a value-based moral decision task, we quan-
tify the level of choice conflict with the MT metric, and exam-
ine how individuals incorporate information from the response
history to make repeated moral decisions. Our study uses
response entropy and cumulative responses (CR) to define
choice consistency on both the subject-level and trial-level.
We find that a stronger correlation between choice conflict and
response entropy is mediated by the weight of reward in de-
cisions. On the neural level, the brain adapts to conflict over
the experiment sessions, and the adaption in reward-related
brain regions is linked to response entropy. Meanwhile, multi-
variate representations in cognitive control and self-referential
brain regions encode the weight of relative reward and CR.
Through understanding choice conflict and response history,
our research sheds light on its significance in multi-trial moral
decision-making from the consistency perspective. These
findings lay the groundwork for studying the underlying mech-
anisms in repeated decision processes.
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Introduction
Repeated decisions are common in daily life, where we often
adapt to different contexts while also maintaining choice con-
sistency—the tendency to repeat past choices. Choice con-
sistency refers to repeating former choices, which is quantified
by cumulative responses (CR) - the time of choosing the
same option across all repetitions(Alós-Ferrer & Garagnani,
2021; Sen, 1993). In moral decision-making, maintaining
consistency is crucial to ensure that our decisions align with
our values, beliefs, or self-image(Jefferson, 2020). Although
previous studies presented repeated moral scenarios(Garrett,
Lazzaro, Ariely, & Sharot, 2016), the role of self-consistency
remains unclear.

Moral decisions engage the reward, self-referential, and
cognitive control networks(Speer, Smidts, & Boksem, 2022).
Dishonest behavior involves weighing external rewards
against moral costs(Allingham & Sandmo, 1972; Becker,
1968), with cognitive control required to override moral
defaults(Speer, Smidts, & Boksem, 2020). Brain regions

like the ACC, IFG, and NAcc are more active in deceivers,
while honest individuals show greater activation in the self-
referential network (PCC, TPJ, MPFC).

However, the neurocomputational basis of consistency in
moral choices is still unclear. Prior work focused on trial-by-
trial effects (e.g., switching costs)(Luu & Stocker, 2018; Weber
et al., 2023) and rarely quantified choice history explicitly(Luu
& Stocker, 2018). In this study, we address these gaps by us-
ing a computer mouse in an fMRI setting, where participants
repeatedly made moral decisions.

Methods
Task Procedure
The experiment included nine self-paced runs, each with 20
randomized questions. In each trial (Fig. 1a), participants first
saw a question and a start button. Upon clicking start, two
answers (correct/incorrect) appeared in the screen corners,
along with information: correctness (black circle), monetary
reward, and past choice frequency (red triangles, visible from
run 2 onward). Incorrect answers offered higher rewards in
over 50% of trials to create a moral-reward conflict. Partici-
pants had 4 seconds to respond, and feedback was shown for
1 second. Trials with no response were excluded. Cumulative
rewards were shown after each session, and mouse position
reset at the bottom center each trial.

Computation of response entropy
Entropy(Shannon, 1948) is one way to quantify the random-
ness of a system, which is adopted to quantify the choice con-
sistency.

H(p) =−p log2 p− (1− p) log2(1− p); (1)

Mouse Trajectory Measurement
Mouse trajectories underwent standard spatial and temporal
normalization(Freeman & Ambady, 2010; Xu, Liu, Hu, & Wu,
2021). We computed the area under the curve (AUC)—the
geometric area between the actual and ideal paths—to quan-
tify response conflict in decision-making(Stillman, Krajbich, &
Ferguson, 2020).

fMRI general linear model (GLM) analysis
For each run and participant, a GLM was constructed with
stimulus onset as the event time and trial-wise AUC as a para-



metric modulator of BOLD signal. Parametric modulator beta
maps were used for inter-subject representational similarity
analysis (IS-RSA; see below).
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Figure 1: Illustration of the experimental paradigm and be-
havioral results.

Results
Choice conflict is correlated with response entropy

Reaction times (RTs) decreased over runs (F(1,304) = 17.22,
p < 0.001), while the mouse-tracking area under the curve
(AUC)—a measure of response conflict—remained stable
(F(1,304) = 0.46, p = 0.50; Figure 1B). AUC reflects hesitation
and decisional conflict.

Higher entropy indicated more inconsistent choices, regard-
less of honesty. AUC was positively correlated with response
entropy (r = 0.36, p = 0.039; Figure 1C), suggesting that
greater decisional conflict accompanied more random behav-
ior. A linear mixed model further confirmed that response en-
tropy—but not lie rate—significantly predicted AUC (entropy:
β = 0.11, p < 0.001; lie rate: β = 0.04, p < 0.001; Figure 1D).

Relative reward weight mediates the link between
choice conflict and response entropy

Higher relative reward and more prior dishonest choices in-
creased lie rates, shifting both threshold and overall dishon-
esty (Figure A). Dishonest responses were primarily driven by
relative reward and relative CR, but not by the total number of
prior dishonest responses (Figure B).

Next, we applied a Bayesian hierarchical drift-diffusion
model (HDDM)(Wiecki, Sofer, & Frank, 2013) to examine the
effect of relative reward and CR. In the best model, both rela-
tive reward and CR significantly influenced the drift rate (pos-
terior probability = 1), with CR having a stronger weight (poste-
rior probability = 0.9965; Figure C). Notably, the weight on CR
negatively correlated with response entropy, while the weight
on reward positively correlated with both response entropy
and lie rate (Figure D–E). Furthermore, the weight on relative
reward significantly mediated the relationship between choice
conflict (AUC) and response entropy(Figure F).

Patterns of choice conflict in cognitive control and
self-referential ROIs represented both consistency
and reward

We extracted the beta maps of AUC from cognitive-control re-
lated ROIs (see Methods). We observed a linear decrease in

Best model: 
 Drift rate (v) ~ ∆CR + ∆reward + session + ∆CR * session + ∆reward * session
 Threshold (a) ~ session
 Starting point (z) ~ session
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Figure 2: (A and B)The effect of reward and CR. (C) Results
of hDDM. (D-F) Correlation of hDDM parameters and behav-
ioral results.

IFG, preSMA, and vlPFC (Figure 3A), indicating the conflict
adaption. Specifically, the mean activity in IFG was correlated
with response entropy (Figure 3B).

We further conducted an inter-subject representational sim-
ilarity analysis (ISRSA) to seek the brain regions encoding the
evaluation of both the weight of relative CR and reward. We
first created a geometric representational space of DDM pa-
rameter space (weights of relative CR and reward). For brain
data, we averaged the beta maps obtained from AUC mod-
ulation effect of all runs. We calculated multi-voxel activity
pattern distances (1-correlation) between each pair of partic-
ipants (Figure 3C). After correlating the behavioral distance
matrix with the brain dissimilarity matrix, we observed signifi-
cant inter-subject representational similarity effects in IFG (r =
0.12, p = 0.0017), ACC (r = 0.09, p = 0.01) and lTPJ (r = 0.09,
p = 0.02; Figure 3D). These results indicated that conflict-
related activity patterns in these regions were more similar
than in other brain regions across participants who shared
similar weights when making repeated moral choices.

Conclusion
We combined mouse-tracking and fMRI to study how peo-
ple weigh current rewards and past choices during moral
decision-making. Choice conflict, indexed by AUC, was asso-
ciated with response entropy—not lie rate—and this relation-
ship was mediated by sensitivity to reward. Participants relied
more on cumulative response history than on immediate pay-
off. At the neural level, dishonesty-related regions encoded
both consistency and reward signals, suggesting that moral
decisions arise from dynamic integration of past behavior and
current incentives across key brain networks.
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(C) Illustration of inter-subject representational analysis
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