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Abstract
A shift toward more naturalistic experiments in computa-
tional cognitive neuroscience has enabled a richer anal-
ysis of brain recordings. These naturalistic experiments
often allow for the extraction of multiple feature spaces
from stimuli, helping better explain variance in voxelwise
encoding models. Two key methods for determining the
unique contribution of each feature space to the vari-
ance explained are variance partitioning and the residual
method. However, no systematic comparison has been
conducted to assess their suitability and properties. To
address that gap, this work compares both methods by
evaluating them in simulated and real-world experiments
and comparing their results. Our findings reveal that
both variance partitioning and the residual method can
effectively determine the unique variance a feature space
explains. However, the residual method requires care-
ful verification of the linear dependence between feature
spaces, a step that variance partitioning does not need.
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Introduction
Recent studies using naturalistic stimuli in computational cog-
nitive neuroscience have enabled a more diverse analysis of
functional magnetic resonance imaging (fMRI) brain record-
ings (Deniz, Nunez-Elizalde, Huth, & Gallant, 2019; De Heer,
Huth, Griffiths, Gallant, & Theunissen, 2017; Gong et al.,
2023). When combined with advances in computational mod-
eling (e.g., deep neural networks), this approach allows for
the extraction of richer and more diverse feature spaces–
quantified representations of stimulus properties that are hy-
pothesized to relate to brain responses as modeled by vox-
elwise encoding models (VM’s) (Lescroart, Stansbury, & Gal-
lant, 2015)). To interpret stimulus representations obtained
from models and examine their impact on predicting brain
responses, prior studies have proposed two methods: (1)
variance partitioning—-a statistical method for estimating the
unique and shared variance explained by different feature
sets (Borcard, Legendre, & Drapeau, 1992), and (2) the resid-
ual approach—-which removes shared information from tar-
get features by applying a linear transformation between the
source and target feature spaces (Toneva, Mitchell, & Wehbe,
2022). However, no systematic comparison has been con-
ducted between these two methods to assess how effectively
they disentangle the unique and shared variance explained
by different feature spaces in the brain. This raises the ques-
tion whether both methods are equally effective in explaining
which aspects of model-derived features uniquely contribute
to brain responses?

To address this question, in this work, we systematically in-
vestigate and compare the two methods in both simulated set-
tings and naturalistic brain recordings, depicted in Figure 1.
In simulated settings, we find that both methods can effec-
tively estimate the unique variance explained by a feature

Figure 1: Variance partitioning and the residual method us-
ing ridge regression and OLS for regressing features were fit
using simulated and experimental test sets. Evaluation was
performed on held-out test sets.

space; however, the residual method requires careful verifi-
cation of linear dependence between feature spaces–a step
not needed in variance partitioning. Further analysis of ridge
and ordinary least squares (OLS) techniques within the resid-
ual method reveals that ridge regression tends to perform less
optimally than ordinary least squares in experimental scenar-
ios. In naturalistic story reading/listening experiments, analyz-
ing multiple feature spaces—such as high-level semantic fea-
tures versus low-level features (e.g., motion energy and num-
ber of letters)—reveals important differences in how spurious
correlations with brain responses are handled. For the letter-
based feature space, both methods successfully reduce spu-
rious correlations. However, when motion energy is used as
the feature space, the residual approach is less effective than
variance partitioning in isolating unique contributions, sug-
gesting that variance partitioning may be more robust to the
collinearity between low-level features and other representa-
tional spaces.

Methods

Dataset. To compare variance partitioning and residual meth-
ods, we perform analyses on both simulated data and fMRI
recordings. Simulations were designed to control the amount
of shared and unique variance between two feature spaces
and their impact on the simulated brain responses. The ex-
perimental data was collected by Deniz et al. (2019) and con-
tained feature spaces and fMRI recordings of subjects reading
narrative stories.
Feature Spaces. The feature spaces used in this work in-
clude a semantic feature space, which encoded the correla-
tion of each word with the basic English words according to
Wikipedia (985 features; Huth, De Heer, Griffiths, Theunis-
sen, and Gallant (2016)). A letters feature space (26 features;
Deniz et al. (2019)), which counted the letters presented to the
subject at any given time, and a motion energy feature space
(4028 features; Deniz et al. (2019)), which encoded the visual
motion of letters seen by the subjects.
Variance Partitioning. To estimate the unique and shared
variance explained by two feature spaces (X1 and X2), we es-
timate the variance explained by them separately and jointly.
The variance explained separately was estimated by fitting
two ridge regression models (Hoerl & Kennard, 1970), one
for each feature space. The variance explained by both fea-
ture spaces jointly was determined using banded ridge regres-
sion (Nunez-Elizalde, Huth, & Gallant, 2019), which accounts



for different regularization strengths for each feature space.
The variance explained uniquely by each feature space is
computed using set theory:
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Residual Method on Feature Spaces. The residual method
aims to remove information encoded by both feature spaces
(X1 and X2) using a linear transformation (S. Oota, Gupta, &
Toneva, 2023). The residuals of this linear transformation f ,
represent the information uniquely encoded in the regressed
feature space: X ′

1 = X1− X̂1, where X̂1 = f̂ (X2). Typically f is
found using ridge regression (S. Oota et al., 2023; Toneva et
al., 2022; S. R. Oota, Çelik, Deniz, & Toneva, 2024). How-
ever, regularization may lead to the incomplete removal of
shared information, which is not desirable. To explore this
issue, our comparisons also include an OLS version of the
residual method which removes all (linearly) shared informa-
tion. Now, a separate linear transformation g can be used to
capture the variance in any given voxel Y uniquely explained
by X1 using the residual feature space X ′

1: ĝ(X ′
1)≈ Y .

Results
Simulated and experimental data were used to evaluate vari-
ance partitioning and the residual method.
Analysis on Simulated Data. Figure 2 shows the compar-
ison between two methods on simulated data. These simu-
lations suggest that variance partitioning is more robust than
both residual methods, with the residual method using OLS
and ridge regression performing differently depending on the
condition.

Figure 2: Simulated data comparing two feature spaces with
varying unique variance. Variance partitioning slightly overes-
timates the ground truth, while residual methods tend to un-
derestimate it. The OLS method proved to be less erroneous
compared to the ridge method.

Analysis on Brain Dataset. In the experimental data, the
semantic feature space accurately predicted brain regions
previously associated with semantics (prefrontal cortex, tem-
poroparietal junction) and also regions unrelated to semantics
(visual cortex for reading) . To predict brain activity that is only
related to semantics and remove spurious correlations, a fea-
ture space unrelated to semantic processing (e.g. motion en-
ergy) can be used in addition to the semantics feature space.
Using the letters feature space, all three methods (Residual
method with Ridge regression, Residual method with OLS,
Variance Partitioning) reduce the spurious correlations (i.e.
high prediction accuracy values of semantic features in vi-
sual cortex). Because activity in the visual cortex is no longer

Figure 3: Prediction accuracy of semantic feature space in vi-
sual cortex before and after applying variance partitioning and
the residual method (lower is better a priori). Across methods,
semantic features explain little unique variance beyond letters.
For motion energy, the ridge residual method attributes the
most variance, while variance partitioning attributes the least.

predicted by semantic features, activity unrelated to seman-
tic processing was successfully explained away by the letters
feature space, as seen in Figure 3. However, when applying
the three methods using the motion energy feature space we
see that the residual method using both OLS and ridge regres-
sion does not reduce spurious correlations as well as variance
partitioning. The residual method using ridge regression es-
pecially does not reduce spurious correlations in the visual
cortex, incorrectly suggesting that the high prediction accu-
racy of semantic features in visual cortex cannot be explained
away by motion energy features.

Discussion & Conclusion
In this study, we systematically investigate how variance par-
titioning and the residual method can be used to determine
the variance uniquely explained by a feature space in rela-
tion to other feature spaces. Using the residual method re-
quires careful verification of linear predictability between fea-
ture spaces. Among the two variants, the residual method
with OLS proves more effective at removing shared informa-
tion between feature spaces compared to its counterpart us-
ing ridge regression. More detailed analysis using more than
two feature spaces, which is how the methods are usually ap-
plied (Deniz et al., 2019; De Heer et al., 2017), is still nec-
essary to fully evaluate variance partitioning and the residual
method. The simulated data can also be further improved by
confounding the linear relationship between feature spaces to
assess the assumptions of the residual method.
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