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Abstract

Working memory (WM) is the ability to maintain and ma-
nipulate information that is no longer present in the en-
vironment. The resilience of WM to distraction is largely
tested by studies employing simple stimuli (e.g., gratings,
shapes, isolated objects). Hence, what kinds of complex,
naturalistic images make for potent WM distractors re-
mains unknown. Here we leverage recent advances in
deep generative models to synthesize naturalistic images
that powerfully disrupt WM. Our approach generates syn-
thetic images with a class-conditional generative adver-
sarial network (GAN), while concurrently testing the effi-
cacy of these images as distractors on participants (n=16)
performing a spatial WM task (human-in-the-loop). With
a genetic algorithm for optimization, we identify the most
salient feature combinations and refine them over genera-
tions to produce powerful “super-distractor” images. Our
study demonstrates the feasibility of generating novel
kinds of images optimized for specific behaviors, with a
human-in-the-loop paradigm.
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Introduction

Working memory (WM) is the ability to temporarily encode,
retain, and manipulate goal-relevant information. Recent re-
search suggests that despite its remarkable robustness, WM
can be disrupted by specialized distractors (Lorenc et al.,
2021). For example, distractors that resemble targets can
strongly interfere with the contents of WM (Yoon et al., 2006).
Distractor mechanisms have been largely studied with simple,
target stimuli, like oriented gratings, with only simple features.
Designing effective distractors for more naturalistic stimuli —
with complex features — remains an open challenge.

It is likely that “optimal distractors” for naturalistic target
stimuli must likewise be complex in terms of their features and
colors. To generate such naturalistic distractor images, we
leverage deep-generative networks (DGNs). Previous studies
employed DGNs to generate unique images whose features
could drive unnaturally high responses in specific visual areas
(Gu et al., 2022; Ponce et al., 2019). These algorithms typi-
cally involve iterative optimization of images by measuring (or
predicting) neural activity for novel, artificially-generated im-
ages, followed by selecting, retaining and refining image fea-
tures that drive the strongest brain responses. Other studies
have designed naturalistic images based on optimizing human
fMRI activations in particular brain regions (Luo et al., 2023).

Yet, to our knowledge, no previous study has sought to
directly optimize images based on their behavioral salience.
Here we generate novel images optimized to disrupt WM by
directly measuring behavior, with a human-in-the-loop. We
demonstrate the efficacy of these “super-distractors” with de-
grading performance accuracy in a spatial WM task.

Methods

Behavior-based image optimization We leverage the
XDream framework (Ponce et al., 2019; Xiao & Kreiman,
2020) for iterative image optimization. Our modified XDream
framework consists of four key components: 1) a BigGAN-
deep network (Brock et al., 2018) that generates class-
conditional images from vector codes and a class label, 2)
a classifier that assigns class probabilities to the generated
images and ensures only class-relevant images are selected
(Mukherjee et al., 2024), 3) a genetic algorithm (GA) that se-
lects the most salient distractors and optimizes their image
codes based on behavioral outcomes and 4) an image filter
based on class membership and similarity. The last step (#4)
is an amalgamation of two sub-steps. First, images gener-
ated by BigGAN-deep were passed to a classifier and im-
ages outside the target class were rejected. Next, pairwise
cosine similarity was computed using features extracted from
AlexNet, and duplicates of similar looking images (similarity
score >0.65) were excluded to ensure feature diversity in the
presented images. After each generation, the GA selects im-
ages for optimization, probabilistically, based on participant’s
accuracies for each image. Here, we present results with im-
ages generated from an exemplar “ladybugs” class, although
other classes of images were also explored.

Spatial working memory task Behavior-based image opti-
mization was tested in a spatial WM task (n=16 participants;
8 experimental + 8 controls) (Fig. 1A). In each trial, after
a 500ms fixation window, four colored images were shown
concurrently along the cardinal axis for 250ms, equidistant
from the center. Following a 750ms noise mask, participants
were shown the previously displayed images in a random se-
quence and asked to indicate the presented location of each
image using arrow keys. Each trial, therefore, involved four re-
sponses. The experiment was performed over 4 blocks, com-
prising a total of 400 trials (100 trials each).

On each trial, three out of the four images presented were
non-optimized images and the fourth was a distractor im-
age whose features were optimized with XDream. 30 non-
optimized images were generated prior to the start of the ex-
periment from which 10 unique triplets of images were con-
structed for every block. These images remained invariant and
were the same for all participants. 10 participant-specific dis-
tractor images were synthesized and optimized over 4 gener-
ations. Distractor and non-optimized image triplets were com-
bined in a counterbalanced fashion across trials.

To quantify the effectiveness of each distractor across gen-
erations of the GA, we implemented a scoring procedure
based on the participants localization accuracy. On each trial,
correctly localized, non-optimized images were scored +1 and
were scored 0, otherwise. We hypothesized that stronger dis-
tractors would impair spatial WM, leading to poorer behavioral
localization accuracy. Accordingly, each optimized distractor
was assigned a GA score that was inversely proportional to
the average localization accuracy for non-optimized images,
across the trials in which the respective distractor was pre-



sented (n=8; experimental). Thus, distractors that consistently
disrupted localization performance were afforded higher GA
scores and were more likely to be selected for the next gener-
ation of images.

To validate the specificity of this optimization procedure, we
included a control group (n=8), in which the scoring logic was
inverted: distractors that induced better behavioral localiza-
tion performance were assigned higher GA scores. Thus,
over generations, the most ineffective distractors would be
selected. This manipulation served as a control to evaluate
whether the observed optimization effects in the experimental
group were genuinely sensitive to participants’ behavior, and
to ensure that the GA was effectively tuning image features
based on their real impact on localization performance.

Results

Synthesizing behavioral super-distractors For the exper-
imental group (n=8 participants), distractor images optimized
using the behavior-based XDream framework produced a pro-
gressive decline in spatial WM performance over successive
generations (Fig. 1B). This indicates that the optimization pro-
cedure was successful in producing images that increasingly
disrupted spatial WM performance. WM accuracies were sta-
tistically significantly lower in the last, compared to the first
generation (p=0.003, n=8). In contrast, the control group of
participants (n=8) — in which image generation was not ac-
tively guided to select the most effective distractors — showed
no significant decrease in WM accuracy across generations
(Fig. 1C). Accuracy remained unchanged between the first
and the last generations (p=0.574, n=8). The results also indi-
cate that the decrease in accuracy in the experimental group
was not due to the effects of fatigue or tedium.
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Figure 1. (A) Schematic of spatial WM task. (B) Decline in
WM accuracy (y-axis) across GA generations (x-axis) for the
experimental group (blue). (C) No significant change in accu-
racy across generations for the control group (orange).

Optimization yields feature convergence Distractor im-
ages generated in the final generation appeared visually more
homogeneous compared to those from the inital generation
(Fig. 2A). To quantify this image convergence, we computed
the pairwise cosine similarity between image features ex-
tracted from the last convolutional layer of the VGG16 neural
network, across generations; numerically, experimental group
images (Fig. 2B, blue) were more converged than control
group images (Fig. 2B, orange). Additionally, we computed
the change in similarity from the first to the last generation
(i.e., final generation similarity minus initial generation similar-
ity) to capture the degree of convergence over time; however,
this metric was not statistically significantly different between
the experimental and control groups (p=0.195) (Fig. 2C).
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Figure 2. (A) Super-distractors from the initial (top) and fi-
nal (bottom) generations (exemplar participant). (B) Similarity
scores across generations and (C) their difference (final-initial)
for experiment (blue) and control (orange) groups.

Conclusion

We propose a novel approach, leveraging deep generative
models, to synthesize naturalistic “super-distractor” images for
spatial WM. These images may be relevant for understanding
brain mechanisms of distractor interference in visual WM.

While images from two other categories (ImageNet classes:
“cars” and “plates”) were also explored in pilot experiments,
“ladybugs” class images exhibited better convergence visu-
ally. These latter images were the only ones employed in the
behavioral experiments reported here. Future work will ex-
plore ways to more systematically select image categories for
such distractor optimization. It is also possible that certain
super-distractor features are common across different cate-
gories of images, and this needs to be tested in future exper-
iments. A key advantage of our method is that it can gen-
erate participant-specific super-distractors. Nevertheless, it
is possible that some super-distractor features are common
across participants, a hypothesis that, again, requires further
study. More generally, the images that we produce could be
relevant for neuromarketing, as well as to better understand
mechanisms of distractibility in neurodevelopmental disorders
like attention-deficit/hyperactivity disorder (ADHD).
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