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Abstract
Neuroscience emerged as a distinct academic discipline
during the 20th century and has undergone rapid ex-
pansion and diversification. This study leverages text-
embedding and clustering techniques together with large
language models to analyze 461,316 articles published
between 1999 and 2023 to provide a snapshot of neuro-
science’s landscape. Inter-cluster citation analysis un-
covers a surprisingly integrated picture. An analysis of
how research clusters align with pre-defined dimensions
demonstrates a strong experimental focus, widespread
reliance on specific mechanistic explanations rather than
unifying theoretical frameworks, and a growing shift to-
wards applied research.
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Introduction
Modern neuroscience has witnessed dramatic expansion and
diversification since its inception in the 20th century. While
this is a natural tendency of scientific disciplines (Andersen,
2016), it can hide the interconnectedness of phenomena and
research questions and may thus hinder further progress
(Popper, 1963, 1985). Consequently, there is a need to pro-
vide a high-level perspective on the evolving landscape of
neuroscience that may help to integrate the field by identifying
unifying principles and methodological approaches as well as
structural limitations that need to be overcome. To address
this, I have compiled an extensive dataset of neuroscientific
abstracts and their metadata and performed a content-driven
examination of the field’s trajectory over a 25 year period.

Results
Neuroscientific Research Domains

I identified neuroscience journals ranked in the top two quar-
tiles in each year from 1999 to 2023 according to the SCIMago
Journal Rank. I supplemented these neuroscientific journals
with Q1 multidisciplinary journals that publish neuroscientific
research such as Nature, Science and Plos ONE. The next
step involved querying PubMed for a maximum of 5,000 arti-
cles per year for each selected journal for metadata and ab-
stracts of research and review articles. After removing non-
neuroscientific articles, the dataset comprised 461,316 arti-
cles published in 375 journals.

To identify the distinct research domains that divide neu-
roscientific work, I clustered abstracts based on their se-
mantic similarity measured as the cosine similarity between
their domain specific text embeddings. To achieve this, I

first embedded abstracts into domain-specific latent space.
I then constructed a semantic graph wherein each abstract
is connected to its 50 semantically nearest neighbors, with
each link weighted by the cosine similarity between its ver-
tices. I then applied the Leiden community detection algorithm
(Traag, Waltman, & van Eck, 2019) on this graph to obtain
clusters. For each cluster, I submitted abstracts of the 200
nearest neighbors to the cluster’s centroid to a gpt-4o large
language model (LLM) from OpenAI to describe the cluster.

Clustering applied to embedded abstracts identified 175
unique clusters ranging in size from 9,155 (cluster 0) to 117
(cluster 174) articles (see Supplementary Figure 1a). The
largest cluster involves research on the mechanisms of neuro-
pathic pain. The smallest cluster is concerned with the effects
of electromagnetic fields emitted by mobile devices on brain
function. While most clusters are dominated by research ar-
ticles, intriguingly two clusters contain more review articles.
Cluster 171, which investigates the pathophysiology and po-
tential long-term effects of SARS-CoV-2 on the nervous sys-
tem, and cluster 173, which investigates the role of exosomes
in neurodegenerative disease. Cluster 171 also presents the
highest median citation rate for both research (8.1 citations
per year) and review (11.1 citations per year) articles, (Supple-
mentary Figure 1b) likely explained by the immense interest in
SARS-CoV-2 during the global pandemic (Mondal et al., 2023;
Samim et al., 2024; Schor, Cudkowicz, & Banwell, 2023). Sev-
eral clusters exhibit some degree of thematic overlap. A total
of 14 clusters are devoted to Alzheimer’s disease (AD), each
investigating distinct but complementary aspects. For exam-
ple, cluster 1 investigates the role of amyloid beta peptides in
the pathogenesis of AD whereas Cluster 47 focuses on the
pathophysiological mechanisms involving tau protein modifi-
cations. This pattern is not unique to AD. There are nine clus-
ters devoted to Parkinson’s, indicating that neurodegenerative
diseases form their own group of clusters. Apart from clus-
ters devoted to specific conditions, I also observed modality
(e.g., vision and audition), cognitive/behavioral (e.g., decision-
making, language, and memory), and methodological (func-
tional neuroimaging, brain stimulation) groups of clusters. My
examination did not reveal any theory-specific clusters.

I followed this up with a systematic investigation of the
underlying dimensions that characterize neuroscientific re-
search. To that end, I defined 10 dimensions (Appliedness,
Methodological Approach, Species, Spatial Scale, Temporal
Scale, Modality, Cognitive Complexity, Theory Engagement,
Theory Scope, and Interdisciplinarity) and submitted abstracts
of the 250 nearest neighbors to a cluster’s centroid to the LLM
to characterize each cluster along these dimensions. The
descriptions generated by the LLM where then in a second



step submitted again to the LLM to judge whether a particu-
lar cluster qualifies for categories that I defined for each di-
mension such as ”human”, ”non-human primates”, and ”ro-
dents” for the Species dimension. Note that the categories
that characterize a dimension are not mutually exclusive. A
quantitative overview of how many clusters qualify for cate-
gories is shown in Supplementary Figure 1c and reveals a
predominantly experimental focus (96% of clusters) that em-
ploys both hypothesis-driven (77%) and data-driven (67%) re-
search. Neuroscientific research often contains a theoretical
element in the sense that it employs computational modeling
(46%). This aligns with the observation that neuroscience
tends to employ micro-theories (64%), i.e., narrowly scoped
mechanistic accounts. Theories of intermediate scope in the
form of domain-specific (35%) and disease-specific (39%) the-
ories are also prevalent. However, only 17% of clusters con-
tain research that employs overarching theoretical frameworks
aiming to explain fundamental principles of brain function. I
observed that translational (55%) and clinical (30%) work sit
atop a broad base of fundamental science (81%). Many clus-
ters contain work on rodents (74%) or humans (71%), though
non-human primates (33%) and other mammals (30%) also
feature prominently. Neuroscience generally shows a bal-
anced division between spatiotemporal scales, though work
at the microsecond scale is sparse (6%).

I next sought to understand the extent to which categories
co-occur by examining the Matthews correlation (phi) coeffi-
cient between pairs of categories. Both molecular and cellular
spatial scales are negatively correlated with regional scale (φ
= –0.4048, t(173) = –5.822, p ≪ 0.0001 and φ = –0.3631,
t(173) = –5.126, p = 0.00148, respectively). The cellular scale
also exhibits a negative correlation with the whole-brain scale
(φ = –0.3773, t(173) = –5.359, p = 0.000497). For temporal
scales, there is often pairwise but never full integration. Fun-
damental research is significantly anticorrelated with clinical
(φ = –0.5496, t(173) = –8.6535, p ≪ 0.0001), translational
(φ = –0.3441, t(173) = –4.8206, p = 0.00587), and method
development (φ = –0.4553, t(173) = –6.7260, p ≪ 0.0001)
approaches. For theoretical scope, there is a negative cor-
relation between micro theories and overarching theoretical
frameworks (φ = –0.3752, t(173) = –5.3234, p = 0.000588).

To examine how clusters interact with each other, I exam-
ined their citation structure. To that end, I computed the Krack-
hardt coefficient (Krackhardt & Stern, 1988) for each clus-
ter’s incoming links (citations its articles receive from exter-
nal articles) and outgoing links (references outside the clus-
ter). The Krackhardt coefficient provides a measure of the
outward (positive) versus inward (negative) focus of a clus-
ter. Notably, 74.86% of clusters exhibit positive Krackhardt
coefficients for both citations and references. These clusters
lean on research from other clusters (indicated by a positive
Krackhard coefficient for their references) but also provide in-
sights for other clusters (indicated by a positive Krackhardt
coefficient for their citations). By contrast, 6.86% of clusters
contain articles that frequently cite and are cited internally, in-

dicated by negative Krackhardt coefficients for both their ref-
erence and citation patterns. The majority of neuroscientific
domains are thus well-integrated and share knowledge.

My last goal was to identify trends in neuroscience. At
the individual cluster level, I examined growth trends in terms
of the size-adjusted annual growth rate, which quantifies the
yearly increase in article count for each cluster relative to its
total number of articles. A majority (52.0%) of clusters have
increased their output above what is expected based on in-
creases in output of the entire discipline. One third of clusters
exhibit stable output as they neither decline nor exceed the
growth of the discipline. Finally, 15.4% of clusters exhibit a de-
cline in their output. Notably, the SARS-CoV-2 cluster (171) is
among the ten fastest growing clusters. Generally, it appears
that growing clusters share a strong applied focus and tar-
get overarching themes such as neurodegeneration (clusters
69 and 141), neuromodulation (clusters 167 and 168), and
technological advancements in neuroscience (clusters 94 and
120). By contrast, declining clusters reflect predominantly fun-
damental research with a focus on receptor dynamics (clus-
ters 9, 55, 60, 75, 89, 101, 124, and 135) and signaling path-
ways (clusters 48 and 102). These extremes of the spectrum
reflect larger trends across clusters. While clusters containing
fundamental research together are growing at a compound
annual growth rate of 1.89%, this is less than the growth ex-
hibited by neuroscience globally (2.39%). By contrast, clus-
ters involving translational research, clinical research, method
development, and technological exploitation exhibit compound
annual growth rates of 3.57%, 4.78%, 7.51%, and 7.80%, re-
spectively. See Supplementary Figure 1d,e for the publication
trajectories of the ten most growing and most declining clus-
ters. A qualitative analysis performed by an LLM on recently
published articles extracted trends for every cluster. Aggregat-
ing these into shared themes across clusters further confimed
that trends are primarily driven by applied research concerns.

Discussion
Neuroscience appears to be thriving as it maintains high out-
put across diverse topics ranging from neurodegenerative dis-
eases, neuromodulation, cognitive functions, to technologi-
cal advances. Despite this diversity, neuroscience achieves
a high level of integration and extensive knowledge exchange
across its domains. The field currently exhibits a good balance
between hypothesis-driven and data-driven approaches and
between fundamental and applied research. However, growth
trends show that fundamental research is losing ground. Neu-
roscience spans all levels of organization, from molecular and
cellular studies to whole-brain dynamics. However, integration
across spatiotemporal scales remains limited. There is, for in-
stance, a clear divide between small and large spatial scales.
A particularly concerning revelation of this study is the field’s
predominant reliance on highly specific micro theories rather
than broader theoretical frameworks. While computational
models are widely used to test mechanistic hypotheses, theo-
retical work that develops and refines overarching frameworks
is notably scarce. The findings of this study highlight that en-



suring that fundamental research remains valued, greater in-
tegration across spatiotemporal scales, and increased theo-
retical synthesis could strengthen the field.
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Supplementary Figure 1: a, Number of articles within each cluster with review articles (orange) stacked on top of research
articles (purple). b, Median citation rates of research and review articles per cluster. Distributions of MCRs are superimposed
on the right. c, Tree map visualizing number of clusters qualifying for a given category within each dimension. Size of a region
reflects the number of clusters that contain work exhibiting the category. Note that categories are not exclusive, and the same
cluster may count towards several categories even within the same dimension. d Number of articles in the dataset for the ten
most growing clusters broken down by year. e Number of articles in the dataset for the ten most declining clusters broken down
by year.


