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Abstract

Current state-of-the-art recurrent neural network models
can capture complex neural dynamics during the perfor-
mance of higher cognitive tasks (Yang, Joglekar, Song,
Newsome, & Wang, 2019; Driscoll, Shenoy, & Sussillo,
2024). However, they largely overlook anatomy, limiting
their ability to make species-specific and anatomically-
precise predictions for experimentalists. Cortex-wide dy-
namical models increasingly integrate anatomical fea-
tures including connectivity, dendritic spines and re-
ceptors (Froudist-Walsh et al., 2021; Mejias & Wang,
2022; Cabral, Hugues, Sporns, & Deco, 2011), but are
incapable of solving most cognitive tasks. Here, we
introduce Cortically-Embedded Recurrent Neural Net-
works (CERNNs), which embed artificial neural net-
works into a species-specific cortical space, facilitat-
ing direct comparisons to empirical neuroscience data
across the entire cortex and allowing the incorporation
of biologically-inspired constraints. We trained CERNNs,
with macaque or human anatomy, to perform multiple
cognitive tasks (e.g. working memory, response inhibi-
tion). CERNNs were trained with different architectural
constraints and biologically-inspired loss functions. We
evaluated CERNNs on (1) task performance, (2) alignment
of connectivity with the macaque mesoscopic connec-
tome, and (3) task-evoked activity patterns. The best
performing models penalized both long-distance connec-
tions and deviations from empirical spine density. These
results suggest that distributed cognitive networks may

arise naturally as the brain attempts to solve complex
tasks under wiring constraints with systematic gradients
of single neuron properties. More broadly, CERNNs con-
stitute a framework by which artificial neural networks
can be integrated with cortex-wide neuroanatomy, physi-
ology and imaging data to produce anatomically-specific
testable hypotheses across species.
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Model architecture

CERNN integrates recurrent neural networks with cortex-wide
neuroscience data through four key brain-inspired constraints:
1. Artificial units (neural populations) are embedded at lo-
cations defined by the cortical geometry 2. Stimuli are input
only to units in primary sensory areas 3. Output is read only
from units in frontal eye fields (FEF, for tasks requiring a sac-
cadic response, as in this work) or primary motor cortex (oth-
erwise). 4. Penalties are imposed during the learning process
for proposing biologically-unrealistic solutions.

To ensure that only units in V1 or S1 receive input, and only
units in FEF produce output, we define three binary masks
Mvis, Msom, and Mout. Each mask is 1 for units in its cor-
responding cortical subset (V1, S1, or FEF/M1) and 0 other-
wise. We then form the masked weight matrices by element-
wise (Hadamard) multiplication:

W̃in =Win ◦
(
Mvis +Msom

)
, W̃out =Wout ◦Mout.



Figure 1: CERNN architecture and training approach. a) Re-
currently connected units each have a spatial location on the
cortical surface. Inputs target only primary sensory areas, and
saccadic responses are read only from Frontal Eye Fields.
b) Single CERNNs were trained to perform multiple (16-26)
neuroscience tasks. c) CERNN models were trained to bal-
ance task performance with biologically-inspired constraints.
d) CERNN models achieved good performance on all tasks
(shown in different colours).

Let h(t) ∈ RN be the hidden state vector (including all cor-
tical locations). Neural dynamics unfold following:

τ
dh
dt

=−h(t) + ReLU
(

Wrec h(t) + W̃in x(t), + bin + ξ(t)
)
,

where x(t) ∈ RD is the external input.
The output ŷ(t) ∈ RK is obtained by:

ŷ(t) = W̃out h(t).

This ensures that the readout is exclusively from FEF units.
This set-up forces the network to deal with brain-like prob-

lems that are alien to typical RNNs, such as the propagation
of sensory activity across the cortex to the frontal eye fields.

Anatomical locations

The spatial location of recurrently connected units was taken
from standard group average structural MRI scans from the
macaque (Yerkes19) (Donahue et al., 2016) and human (Hu-
man Connectome Project FS-LR) (Elam et al., 2021). Within
each standard surface, we placed units at locations at the cen-
tre of cortical areas defined by popular parcellations for each
species (Markov et al., 2014; Glasser et al., 2016). We cal-
culated the geodesic distances between pairs of units along
the cortical surface, to penalize long-distance connections
(Achterberg, Akarca, Strouse, Duncan, & Astle, 2023).

Integration of dendritic spine count gradients in the
macaque and human
Dendritic spine counts are the locations of excitatory synaptic
connections, and in primates there is a systematic increas-
ing gradient of spines along the cortical hierarchy (Elston,
2007). These spine gradients are critical for cortex-wide dy-
namical models to reproduce realistic cognitive activity pat-
terns (Froudist-Walsh et al., 2021; Mejias & Wang, 2022). We
aimed to capture this spine count gradient in the CERNNs.

In the macaque, we used spine-count data from 27 regions
(Elston, 2007), and inferred the spine count for the remain-
ing regions based on the cortical hierarchy (Froudist-Walsh
et al., 2021). For the human, where spine data is sparsely
available, we capitalized on the inverse correlation between
the T1w/T2w ratio from structural imaging data and the spine
count (Pereira-Obilinovic, Froudist-Walsh, & Wang, 2024) to
infer the estimated spine count. In model variants with the
spine loss Lspine, the models were penalized during training if
the total absolute incoming connections to an area deviated
from the spine count.

Training CERNNs to solve cognitive tasks
We compared CERNNs trained to perform 12-26 cogni-
tive tasks while balancing task performance with distinct
biologically-inspired loss functions (e.g. with wiring cost min-
imisation, entropy maximisation, Figure 1), and tested which
trained networks most closely match the empirical meso-
scopic connectivity of the macaque cortex.

We define the task loss Ltask as the time-averaged mean
squared error between the network’s output ŷ(t) and the target
output y∗(t). Let i index the output units and t index time. We
trained CERNNs with backpropagation-through-time to min-
imise the total loss L, which contained Ltask and the other
brain-inspired losses (Figure 1). After training, many single
CERNN models with anatomical constraints learned the tasks
well (above 95% performance).

Comparison with macaque connectivity data
Macaque CERNN model connectivity weights were compared
to retrograde tract-tracing data (Markov et al., 2014), specif-
ically the complete 40-area subgraph (Froudist-Walsh et al.,
2021). Human CERNN model connectivity weights were com-
pared to diffusion MRI tractography data from the Human Con-
nectome Project (Demirtaş et al., 2019).

In networks that penalized long-distance connections with
an L2-style regularizer, and penalized deviations from the
spine count, we observed several salient features from real
brain connectivity. 1) Both macaque and human data demon-
strated an exponential decay of connectivity strength with
distance. Notably, this was only observed for L2-style dis-
tance penalties, and not L1-style, as previously proposed
(Achterberg et al., 2023). 2) The density of the human matrix
was considerably lower than the macaque matrix, as predicted
by comparative neuroanatomy studies (Magrou et al., 2024).
3) Higher cortical areas formed strong recurrently connected
networks (Markov et al., 2014).
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Figure 2: CERNN connectivity, task performance and exam-
ple cortical activity patterns. Trained CERNN models show
realistic sparsity in the connectivity for both Macaques (a) and
Humans (d), and exponential decay with distance (d), (e). (c)
CERNNs solved the cognitive tasks through distributed cor-
tical activity. (f) Delay-period activity is characterised by dis-
tributed network activity distant from primary sensory areas.
Here activity patterns across are classified as sensory or cog-
nitive in different task periods by comparison with canonical
resting-state networks (Yeo et al., J. Neurophysiol. 2011).

Conclusions
CERNN is a framework that can be extended to integrate
many other types of neuroscience data (e.g. receptor den-
sities and anatomical connectivity). By adapting this frame-
work to the comparison of multiple species (and comparison
with cross-species data), CERNNs can be a valuable tool to
identify species-specific and general cognitive mechanisms.

Through continued integration with neuroscience data,
CERNNs will enable prediction of cortex-wide mechanisms of
cognition that are species-specific and anatomically-precise.
This will accelerate the ‘virtuous cycle’ between model-guided
cortex-wide experiments and experimentally-driven model im-
provements.
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