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Abstract
Functional organization in the form of topographic maps
is a hallmark of many cortical systems and is believed
to arise from biophysical efficiency, such as the mini-
mization of neuronal wiring length. Recently, Margalit et
al. (2024) developed the TDANN as a topographic con-
volutional neural network (CNN) that recapitulated gross
ventral stream topography while minimizing feedforward
wiring length. However, standard CNNs lack mechanisms
for within-layer long-range interactions that are well iden-
tified in the primate visual cortex. Here we leverage a
vision transformer (ViT), which learns to behave locally
like CNNs through training and possesses long-range in-
teractions via self-attention, to learn topographic proper-
ties. We find that a topographic ViT reproduces key topo-
graphic motifs, maintains high object categorization per-
formance, and shows reduced inter- and intra-layer wiring
length. We thus introduce a new class of topographic
models that can express hypotheses about the roles of
local vs. long-range cortical interactions in the brain.
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Motivation
Topographic maps—which portray the arrangement of neu-
rons in characteristic spatial patterns—have been ubiquitously
found in various cortical systems such as visual (Hubel &
Wiesel, 1962), auditory (Humphries, Liebenthal, & Binder,
2010), parietal (Harvey, Klein, Petridou, & Dumoulin, 2013),
precentral (Wong, Kwan, MacKay, & Murphy, 1978), and me-
dial entorhinal (Obenhaus et al., 2022).

Recently, Margalit et al. (2024) built the TDANN—a topo-
graphic convolutional neural network (CCN)—by imposing a
proxy for biophysical efficiency on the task-optimization learn-
ing objective and found that the model predicted topographic
maps in early and higher ventral visual cortex. CNNs have
established themselves as mechanistic models of biological
vision, in part due to the hard-coded hierarchy, underlying
biologically-plausible computation, and extensive vetting on
both neural and behavioral data (Lindsay, 2021; Yamins et
al., 2014). Subsequently, relatively sparse but growing atten-
tion has been paid to vision transformers (ViTs) (Vaswani et
al., 2017) as models of the ventral visual cortex, which not
only perform computations that are believed to be biologi-
cal, perhaps resembling neuron-astrocyte interactions in the
brain (Kozachkov, Kastanenka, & Krotov, 2023), but also ef-
fectively predict neural and behavioral visual data (Conwell,
Prince, Kay, Alvarez, & Konkle, 2024). A lesser known fact
about ViTs is that they learn to behave like CNNs through
training by establishing a local-to-global hierarchy in effective

receptive field patterns (Huang, Kotar, Lee, Cao, & Yamins,
2024). Additionally, they implement what can be thought of as
within-layer long-range lateral connections-like interactions via
self-attention. Long-range horizontal connections have been
widely identified in primate visual cortex (Liang et al., 2017),
but seem to be lacking in standard CNNs. ViTs, thus, present
themselves as good candidates for understanding the poten-
tial contribution of both local and long-range interactions within
the framework of building a topographic model, as well as for
studying the effects thereby on those interactions.

Results
We build a topographic ViT by training a ViT base-16 on
both a task and spatial objectives. The task objective is self-
supervised contrastive learning via the MoCo v3 (Chen, Xie, &
He, 2021) training objective. The spatial objective encourages
nearby pairs of model units from its attention layers, which are
placed on a simulated cortical sheet, to have more correlated
responses than distant pairs (following Margalit et al. (2024)).

Reproducing ventral stream topography

The topographic ViT recapitulates V1 preference maps for
orientation, spatial frequency, and color, exhibiting pinwheel-
like iso-orientation domains and punctate color blobs (Figure
1(a)). Quantitative analyses of the difference in preference as
a function of pairwise cortical distance, circular variance, and
preferred orientation produce curves closely matching those
observed in macaque V1. Although the model slightly under-
performs the TDANN on the map smoothness metric and has
a larger cardinality index, it achieves a higher pinwheel den-
sity and a greater proportion of strongly orientation-selective
units, aligning more closely with macaque data.

Similarly, the topographic ViT produces category-selective
patches in its most VTC-like layer (Figure 1(b)). Selectivity
maps are slightly less smooth, if not as smooth, compared to
human VTC data on various domain categories from the fLoc
stimuli set (Stigliani, Weiner, & Grill-Spector, 2015). While
the model produces a higher average patch count than the
TDANN, the average patch surface area across categories ap-
proaches measurements from human VTC.

Furthermore, the topographic ViT effectively predicts
macaque electrophysiological responses under a linear map-
ping, without any compensation of the hierarchical alignment
between model layers and visual areas (Figure 1(c)).

Maintaining high object categorization performance

A key limitation of the TDANN was the reduction in ImageNet
object categorization performance under a spatial constraint.
In contrast, not only does a task-only ViT outperform the
TDANN by approximately 25% on object categorization, the
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Figure 1: The topographic ViT reproduces V1- and VTC-like topography, does not incur a performance drop on object
categorization, and minimizes both inter- and intra-layer wiring length. (a) Moving from left to right across columns, in a
breadth-first order: orientation, spatial frequency, and color preference maps for a random inset on the simulated cortical sheet;
pairwise difference in preference as a function of pairwise cortical distance; map smoothness; distribution of circular variance
(vertical lines represent thresholds for strong selectivity as determined by the mean circular variance (Ringach et al., 2002));
distribution of preferred orientations; percentage of strongly orientation selective units; proportion of units preferring cardinal
directions over obliques; and density of pinwheel-like discontinuities. (b) Selectivity for various categories from the fLoc stimuli
set and responses to these categories for a unit highlighted with a black star; map smoothness for each category; category-
selective patches; average number of patches across categories; average surface area of patches; and overlap between units
that are face- and body-selective vs. face- and place-selective. (c) Variance explained under model units to neural data mapping
via linear regression. (d) ImageNet validation set object categorization performance. (e) Estimated effective dimensionality. (f)
Feedforward and within-layer wiring length. Within-layer “wiring” length is computed by looking at the attention-weighted distance
on the simulated cortical sheet between each pair of units. For more details on the metrics, please refer to Margalit et al. (2024).

topographic ViT does not incur a performance drop due to the
imposition of a spatial constraint (Figure 1(d)).

Reducing intrinsic dimensionality and wiring length

Next, we analyze the effects of spatial constraints on learned
model features. We find that the topographic ViT shows re-
duced intrinsic dimensionality of population responses across
all layers, mirroring the TDANN (Figure 1(e)).

Spatial constraints also minimize inter-layer (feedforward)
wiring length in the model (Figure 1(f) left). Additionally,
because ViTs incorporate long-range lateral connections-like
interactions via self-attention, we can measure within-layer
“wiring” length based on attention-weighted cortical distances
between pairwise unit interactions. Intriguingly, we observe
that long-range interactions are heavily penalized, likely re-
flecting the high “wiring” cost they incur (Figure 1(f) right). For

both inter- and intra-layer interactions, wiring length is penal-
ized more in higher than early model layers.

Discussion
In this paper, we introduce a topographic ViT by incorporat-
ing a spatial constraint into a self-supervised task objective,
aiming to assess whether the model can capture the gross to-
pography of ventral visual cortex—and, if so, to investigate the
roles of local and long-range interactions under this constraint.
We find that the topographic ViT reproduces key aspects of
both V1- and VTC-like topography, maintains high categoriza-
tion performance, and exhibits reduced inter- and intra-layer
wiring length. Further investigation is needed to clarify the
contribution of long-range interactions in early model layers,
where such connections are not as strongly penalized, and to
understand their role in shaping the emergence of topography.
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