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Abstract

Syllable segregation and source separation are founda-

tional components of neural speech processing, yet con-

sensus on their underlying mechanism remains elusive.

Several hypotheses have been proposed, suggesting that

the brain may align its activity to incoming linguistic stim-

uli via evoked responses, entrainment of endogenous os-

cillations, or some combination of the two. We investi-

gate the origin of oscillatory behaviour in syllable seg-

regation by modelling the dynamical response to peri-

odic linguistic stimuli. We compare a biophysically accu-

rate neural mass model and a phase-resetting oscillator

with prior experimental EEG data. We find that a corre-

lation between neural activity entrainment strength and

the sharpness of incoming phonemes, identified in the

EEG experiment, is readily reproduced by both the neural

mass model and the oscillator. However, when the phase-

resetting dynamics are removed, the oscillator fails to re-

produce the correlation. This demonstrates that phase-

resetting is required for sharpness specific tuning of neu-

ral entrainment to speech. Identifying the neural corre-

lates of this phenomenon may be possible through inter-

rogation of the biophysical features of the neural mass

model.
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Introduction

Two key components of speech processing are source sepa-
ration and syllable segregation. These allow us first to attend
to a particular voice amongst background noise, including
potentially many other voices, and subsequently identify key
sounds comprising words. Neural activity thus aligns with the
syllabic rhythm of speech, and in particular, to the rhythm of
the voice being attended to. Multiple underlying mechanisms
have been proposed for this apparent entrainment of neural
activity to speech, with debate around whether it results from
activity evoked by acoustic edge features or through phase-
resetting of endogenous oscillations (Schroeder & Lakatos,
2009; Oganian et al., 2023; Obleser & Kayser, 2019). Identi-
fying the signatures of each and probing the neural response
to speech through careful experiment is key to settling this de-
bate.

In this direction, (Cucu, Kazanina, & Houghton, 2022) in-
vestigated the mechanisms behind the neural response to
low-frequency speech components by analysing the entrain-
ment of electroencephalography (EEG) activity to periodic se-
quences of consonant-vowel (CV) phonemes. They identified
a robust correlation (→0.91, p < 0.001) between entrainment
strength and phoneme envelope sharpness, quantified using
a range of acoustic features. The dynamics that produces
such a correlation remains unknown: is it the result of particu-
lar biological features of neural populations, or a fundamental
feature of driven oscillator systems?

A promising mathematical model of macroscopic neural
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/be/, /ba/, /be/, /bu/, /bo/, ...

Figure 1: Experimental audio stimuli (a) were processed into
envelopes (b), with added noise, and used to drive the mod-
els. The mean ITPC (d) was calculated over the activity (c) of
60 trials for three sequences of each CV phoneme type.

behaviour that has the potential to address this question is
the next generation neural mass model (NGNMM) (A. Byrne,
Brookes, & Coombes, 2017). This is an exact mean field
reduction of microscopic spiking network dynamics that in-
corporates biophysical features to reproduce complex oscilla-
tory neural dynamics (A. Byrne et al., 2017; Pietras, Devalle,
Roxin, Daffertshofer, & Montbrió, 2019; Á. Byrne, O’Dea, For-
rester, Ross, & Coombes, 2020; Á. Byrne, Ross, Nicks, &
Coombes, 2022). As such, it may also capture the oscilla-
tory dynamics of the speech processing phenomenon we are
considering here.

To investigate the mechanism underlying the correlation,
we use the experimental auditory stimuli to drive both the
NGNMM and a phase-resetting oscillator model. We compute
the entrainment of the model activity to the periodic stimuli and
identify any correlation with the sharpness of the phonemes.
Both the NGNMM and the oscillator model reproduce the ex-
perimentally observed correlation. When the phase modula-
tion that creates the phase-resetting behaviour in the oscillator
model is removed, the correlation disappears. This suggests
that a phase-resetting mechanism may underlie the correla-
tion, and may therefore be facilitated by the dynamics of the
NGNMM. Understanding which features of the NGNMM allow
this may enable the identification of biological correlates of this
phenomenon.

Methods

The experimental audio stimuli, near-isochronous ↑4Hz se-
quences of 20 CV phonemes, were transformed to form sound
envelopes for each sequence. Each sequence comprised a
single consonant (1 of 15) paired with 20 randomly selected
vowels, e.g. “be, ba, bo, bo, bu,...”. Additive noise, constructed
out of a random selection of distorted phoneme envelopes,
was added to the stimuli at particular signal-to-noise ratios.
This resulted in 60 trials for each stimulus, of which there were
three for each of the 15 CV phonemes.

We used the envelopes to drive three different models (Fig-
ure 1). First, the NGNMM, with the drive applied in the same
way as in (A. Byrne et al., 2017) and parameters set such that
the NGNMM was quiescent under no stimulation, but oscil-
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Figure 2: Mean 4Hz ITPC vs envelope sharpness. Each dot represents a different consonant-vowel condition. The NGNMM and
phase-resetting oscillator reproduce the correlation seen in the EEG experiment. The non-phase-resetting oscillator does not.

lated at approximately 4Hz under small stimulus. Second, we
used the oscillator model from (Oganian et al., 2023):

!̇ = 2∀F → cs(t)
r

sin(!) ,

ṙ = r(1→ r2)+ cs(t)cos(!) ,
(1)

with a stimulus s(t) that forces a reset towards ! = 0. The
stimuli were normalised to have a consistent integral over the
samples. We added 1/f noise to the activity with a signal-to-
noise ratio of 0.1. Finally, we created an oscillator model with-
out phase-resetting by removing the sine and cosine terms.

The Inter Trial Phase Coherence (ITPC) of the model activ-
ity across the 60 trials of a given stimulus was used to evalu-
ate the strength of the entrainment to the periodic stimuli, as
in (Cucu et al., 2022). For each CV phoneme, three sets of
60 trials were conducted, and the mean ITPC calculated. We
used the measure of phoneme sharpness specified in (Cucu
et al., 2022). We tested a range of signal-to-noise ratios and
drive strengths, and present a typical example in Figure 2.

Results

The NGNMM demonstrates robust entrainment to the 4Hz
stimuli, and further reproduces the negative correlation ob-
served in experiment (EEG: r =→0.91, NGNMM: r =→0.75,
Figure 2 a, b).The phase-resetting oscillator model also pro-
duces a strong correlation between the entrainment strength
and phoneme sharpness (r =→0.9, Figure 2 c), but when the
phase-resetting dynamics are removed, the correlation is no
longer present (r =→0.094, Figure 2 d).

Discussion

The correlation is absent when there is no phase-resetting,
showing that phase-resetting is required. The NGNMM also
produces the correlation, indicating it also resets phase. We
are interested in the neurological origin of this experimen-
tally observed speech processing phenomenon. By taking
advantage of the biophysical basis of the NGNMM’s construc-
tion, and through comparison to the phase-resetting model
as a minimal working example, it may be possible to identify
the key neuro-dynamical components that enable phoneme-
sharpness specific tuning of neural entrainment to speech.
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