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Abstract

Understanding the process of memory formation in neu-
ral systems is of great interest in the field of neuro-
science. The Neuroidal Model poses a plausible the-
ory for how memories are created within a computational
context. Previously, the algorithm JOIN has been used to
show how the brain could perform conjunctive and dis-
junctive coding to store memories. A limitation of JOIN
is that it does not consider the coding of temporal infor-
mation in a meaningful manner. We propose SegMem, a
similar algorithmic primitive that is designed to encode
a series of items within a random graph model. We in-
vestigate the feasibility of this procedure empirically by
observing its stability in our model. Our goal here is to
inspire further work in scaling our methods to function at
a human-level magnitude of computation.
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Introduction

We propose a hew memory generation algorithm capable of
encoding sequential information for the Neuroidal model, by
Leslie |Valiant| (1994). We demonstrate the feasibility and sta-
bility of SeqMem, which can generate memories of consistent
size by empirical simulation within a faithful Neuroidal model.

A key motivation for this model is for it to be as simple as
possible, so that if a certain computation can be accomplished
in the Neuroidal model then there should be no doubt that
the same computation can be accomplished in mammalian
brains. A result of successful modeling would allow for compu-
tational agents to demonstrate behaviors such as hippocam-
pal replay similarly to humans (Olafsdéttir et al., 2018).

Background

The Neuroidal model is an algorithmic, deterministic, spiking
neural network with uniformly random synaptic connectivity,
hetero-associative memory, and with weak and synchronized
timing mechanisms (Valiant, |2000). The Neuroidal model is
an Erdés—-Rényi G,, random graph that encodes memories.
It consists of a number of neurons with directed and weighted
synapses connecting them.

The JOIN algorithm has been introduced to perform mem-
ory generation by connecting two existing memories to a
newly created memory. JOIN is reminiscent of coding within
the brain, which has been found to occur in real neural sys-
tems (Tacikowski et al., |2024). Extensive results have been
found for JOIN'’s effect on the overall capacity of the model
when neuron sharing is allowed (Perrine et al., [2024).

Definition of Memory We define a "memory" as a set of
nodes in an Erdés-Rényi G, graph with realistic parameters.
This coding of discrete items remains a plausible method for
memorization in biological systems (Komorowski et al., [2009;
Nieh et al., 2021}; |Tacikowski et al., 2024).

Methodology

A neuron will fire if the weights of incoming synapses sum
to equal or exceed a threshold value. Various algorithms, in-
cluding SegMem and JOIN, will involve an attribute k and set a
subset of synapses’ weights to % Memories are represented
by groups of neurons of an expected size, which is a key char-
acteristic of the model (Perrine et al., [2024).

One of the characteristics of SeqMem is that a memory de-
rived from another will activate if the other is active. Suppose
the original memory is A; and the generated memory is A;.
When all of the neurons in A; fire, we expect that in the next
time step that all the neurons in A; will fire.
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Figure 1: Example of a SeqMem memory of length [



Synapse Strength Locality

SeqMen relies on variable synapse strength to maintain con-
sistency. Using a constant k leads to a volatile model here.
We will use a temporary and local variable s to represent the
synapse strength used during the generation of each individ-
ual memory using SegMem.

Algorithm

The goal is to take a single memory A}, generate a new mem-
ory A;, and continue generating memories to reach a defined
endpoint of memory A;. We show an example of this process
as Figure[T] One step of the algorithm is defined as follows:

1. lterate over all synapses. For every neuron in the model,
track how many incoming synapses there are from a neuron
in A; in a list K. These values are the max s that would
include that neuronin A; .

2. lterate over all neurons. For each possible value of s, track
how many neurons have s or more incoming synapses from
a neuron in Ay in a list B. These are how big the memory
A;11 would be for each value of s.

3. Find an s such that A;;1 is of appropriate memory size.

4. lterate over all neurons. Each neuron with s or more incom-
ing synapses from a neuron in A; is added to A; .

Simulation

Our simulation repeatedly generates sequences of the same
length. The initial memory of each sequence is gener-
ated randomly representing noise of uniform, expected size.
Data from these trials are given in Figure Our code
is available here: https://github.com/chandradeep24/
Valiant/blob/main/notebooks/SegMem/SegMem. 1pynb

Results

The goal of our results is to show that SeqgMem is stable within
the Neuroidal Model by demonstrating consistent memory
sizes generation, which matches the model’s expected mem-
ory sizes. Our model parameters reflect well-established bio-
logical structures observed within neuroscience, which is im-
perative to justify its plausibility (Valiant, 2005).

Figure [2| displays the mean and 25th to 75th percentile
range of memory sizes for each model. This evidence sug-
gests that longer sequences would remain stable for models
closer to biologically accurate size.

It is noted that the first memory in each sequence has
different behavior, potentially due to it being generated ran-
domly. For each neuron in each model, we counted the num-
ber of memories they appeared in and how many incoming
synapses they have. We plotted the mean and 10th to 90th
percentile range in Figure[3]
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Figure 2: Memories sizes generated by the simulation and
scaled to their expected memory size.
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Figure 3: The number memories each neuron appears in vs.
the number of incoming synapses it has.

Conclusion

In this paper, we present the first sequential memory gener-
ation algorithm for the Neuroidal model. We demonstrate its
stability through empirical data which focused on the range of
memory sizes and synapse weights to show they are within
reasonable bounds. We explore how the number of incoming
synapses affects the chances of a neuron being included in a
memory. This is a first step for this functionality of the model,
which we hope will inspire further work.


https://github.com/chandradeep24/Valiant/blob/main/notebooks/SeqMem/SeqMem.ipynb
https://github.com/chandradeep24/Valiant/blob/main/notebooks/SeqMem/SeqMem.ipynb
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