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Abstract 

Myelin wraps axons, resulting in increased conduction 
speed. For a long time, myelin patterns were thought to be 
established in development, after which they remained 
static. However, over the past decade, evidence has 
accumulated demonstrating that myelination changes 
throughout life, is activity dependent, and that myelin 
plasticity plays a role in various forms of learning, 
ultimately shaping behavior. Crucially, blocking the 
formation of new myelin leads to impaired learning in 
various domains. Despite the experimental evidence, there 
has been relatively little computational work exploring 
myelin plasticity, with no plausible account to how 
low-level changes in myelin can lead to high-level changes 
in behavior. Here, we take a step towards such an account. 
Specifically, we demonstrate that a model of spiking 
neurons, employing established cortical motifs, and using a 
simple and biologically grounded myelin learning rule, can 
learn associations – a cognitive building block that 
underlies more complex capacities such as motor 
sequencing and predictive processing. Crucially, synaptic 
weights are all equal and remain static throughout our 
simulations; the functional changes we observe arise solely 
from changes in conduction delays. Our work provides a 
proof of principle as to how myelin plasticity may shape 
neural circuits to qualitatively change behavior. 

Introduction 

Myelin is a fatty substance that ensheaths axons - 
increasing their conduction speed. It is formed by 
oligodendrocytes (OL’s), which differentiate from 
oligodendrocyte precursor cells (OPC’s), the largest 
population of proliferating cells in the adult brain (Dawson et 
al., 2003). It has been generally believed that myelin is 
established as part of a developmental program to set up 
circuits, after which it remains largely static. However, in the 
past decade, evidence has accumulated that challenges this 
dogma. 

Recent research has shown that myelin plasticity 
continues into adulthood, is modulated in an activity 
dependent manner, and is implicated in various forms of 
learning (for a comprehensive review, see Bonetto et al., 
2021). Chemogenetic and optogenetic stimulation causes 
increases in myelination (Gibson et al., 2014; Mitew et al., 
2018), whereas sensory and social deprivation results in 

myelin deficits in specific brain regions (Liu et al., 2012; Xin 
et al., 2024). Moreover, neurons that are more active tend to be 
preferentially myelinated (Hines et al., 2015). Further, myelin 
patterns in the cortex are not all or none, but rather, individual 
axons exhibit patchy myelination (Tomassy et al., 2014; 
Hughes et al., 2018), raising the possibility that conduction 
delays can be adjusted along a broad continuum. Recent 
studies have demonstrated that various forms of learning, for 
instance, motor skill learning (Mckenzie et al., 2014; Xiao et 
al., 2016), and memory consolidation (Steadman et al., 2020) 
are accompanied by changes in myelin in relevant circuits. 
Crucially, blocking the differentiation of new OL’s (restricting 
the formation of new myelin) via the deletion of a 
transcription factor, myrf, is followed by impairments in the 
acquisition of new skills, while sparing those that have already 
been learned (Mckenzie et al., 2014; Xiao et al., 2016; 
Steadman et al., 2020). The body of experimental evidence 
that has accrued indicates that activity dependent myelin 
plasticity plays a role in learning-related behavioral change. 

Despite the growing body of experimental findings, 
there has been comparatively little computational work 
investigating the consequences of myelin plasticity. The few 
computational studies within this domain have explored how 
myelin changes can affect aspects of circuit dynamics such as 
changes in synchrony or correlation structure, often relying on 
representing the activity of an entire population of neurons as 
an oscillator, or utilizing complex learning rules (Pajevic et al., 
2014; Noori et al., 2020; Talidou et al., 2022; Pajevic et al., 
2023). However, these studies have not offered a plausible 
account to how changing conduction speed can bring about 
behavioral changes. 

Here, we demonstrate that a biologically grounded 
model of spiking neurons, along with a simple myelin learning 
rule, can reliably learn associations – a fundamental cognitive 
function that underlies capacities such as motor sequencing 
and predictive processing. Our model draws on several 
established cortical motifs: recurrence, delayed inhibition with 
long lasting IPSC’s (Packer & Yuste, 2011), and clustered 
neural connectivity (Perin et al., 2011). 

Results 

Our model consists of 2 layers of recurrently connected leaky 
integrate and fire neurons (FIg 1A) with randomly sampled 
conduction delays and biophysically realistic parameters. Each  
 
 
 



 

 
 
 
 
 

Figure 1: (A) Schematic of the model. (B) Adjacency matrix 
(C) Clustering revealed by sorting of adjacency matrix. 
 
layer consists of 100 excitatory neurons with each neuron 
synapsing onto 20 neurons in the opposite layer. Based on 
cortical connectivity patterns (Perin et al., 2011), we constrain 
the network connectivity to promote clustering (Fig 1B and 
C). Additionally, the neurons in each layer synapse on a single 
inhibitory neuron that provides delayed inhibition to every 
neuron in the opposite layer, with the decay rate of IPSC’s 
being longer than that of EPSC’s. This is modeled after the 
connectivity patterns and biophysical properties of local 
inhibitory neurons, for instance, PV+ interneurons (Packer & 
Yuste, 2011). Along with intrinsic circuit dynamics, we also 
add noise to each neuron, sampled from a gamma distribution, 
to mimic spontaneous neural activity. Crucially, synaptic 
weights are all equal and remain static through our 
simulations, with the functional changes in our network being 
brought about solely through changes in delays. 

We start by showing that before learning, stimulating 
(bringing closer to threshold) a subset of neurons, A, in layer 
1, results in diffuse activity in layer 2. In the learning stage, 
we pair stimulation of A with stimulation of a subset, B, in 
layer 2. We use a simple learning rule – if the firing rate of a 
neuron over a 200ms sliding window exceeds a threshold, we 
decrease its delay by a small, fixed amount. The high firing 
rate requirement is inspired by observations that neural 
activity can trigger calcium transients in OL processes which 
in turn are correlated with myelin changes (e.g. Krasnow et 
al., 2018). After 50 paired stimulation trials, we test the 
network again with the newly learned delays. After learning, 
stimulating A results in only neurons in B being activated (Fig 
2A). Next, we repeat the process, utilizing the same initial 
conditions, this time pairing A with a different subset of 
neurons, C. In this case an association between A and C is 
formed (Fig 2B) 

We provide some intuition as to why the model 
works. Delayed inhibition produces competitive interactions 
such that earlier spike arrivals are favored, and later arrivals 
are ineffective at activating their targets. Initially, stimulating 

 
Figure 2: (A) Learning an association between A and B. (B) 
Learning an association between A and C. 

 
A results in the arrival of impulses to each layer 2 neuron with 
roughly equal delays (equal means, but some variance). Thus, 
there is little bias as to which cluster of neurons in layer 2 will 
be activated. By pairing A with simultaneous  stimulation of 
B, neurons that are highly connected between A and B will 
experience positive feedback, and reverberate, leading to 
higher frequency firing than the stimulation of A or B alone. 
The reverberation-induced high firing rate puts these neurons 
over the threshold of the myelin learning rule – decreasing 
their delays. The result is that the highly connected set of 
neurons between A and B end up with shorter delays on 
average than other neurons. Thus, subsequent activation of A 
will induce earlier activation of neurons in B and competitive 
inhibition will suppress the rest of the population from firing, 
reflecting the formed association. 

Conclusion 

We present a proof of principle as to how myelin 
plasticity in a network of neurons with established cortical 
motifs can perform behaviorally relevant computation – 
forming associations. Association learning is a 
computational building block for a variety of cognitive 
functions, from linking together motor sequences, to 
learning predictive relationships in modalities such as 
vision and language. In ongoing work, we are exploring 
sequence learning and representation learning based on 
the ideas introduced in our model. 
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