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Abstract 

The hippocampus has been strongly implicated in 

both taking snapshots of individual experiences 

and extracting common structure across these 

experiences — functions often in tension. Prior 

evidence suggests an anatomical division of 

labor: the trisynaptic pathway (TSP) employs 

pattern-separated representations that store 

episodes while the monosynaptic pathway (MSP) 

uses overlapping representations to support 

statistical learning. A fundamental mystery 

remains, however: how does the brain recruit the 

right representation at the right time? Medial 

prefrontal cortex (mPFC) has been proposed to 

exert control over hippocampal outputs. Here, we 

introduce a stimulus-computable mixture-of-

experts system featuring MSP- and TSP-like 

neural network experts, along with an mPFC-

inspired gating network that controls their 

outputs. The system performs exemplar 

recognition and categorization simultaneously, 

and learns to adaptively combine expert outputs. 

We found that joint training of the experts and the 

gating network is necessary and simple mixing is 

insufficient. This framework illustrates how mPFC 

control may harness hippocampal specialization 

to resolve opposing computational objectives. 
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Introduction 

The hippocampus supports both episodic (Dickerson 

& Eichenbaum, 2010) and structure learning (Mack et 

al., 2018) — functions that impose opposing 

computational demands. C-HORSE, a biologically-

grounded model of the hippocampus, provides an 

account of how the hippocampus could support both 

functions, assigning these distinct computational 

roles to separate pathways (Schapiro et al., 2017). 

The TSP is suited to building sparse pattern-

separated representations that orthogonalize 

episodes, and the MSP to building overlapping 

distributed representations that extract structure. A 

critical puzzle remains, however — how does the 

brain adaptively deploy representations most useful 

for a given task? Prior work has proposed mPFC-

hippocampal interactions as a candidate control 

mechanism, facilitating adaptive behavior that is 

responsive to task demands (Eichenbaum, 2017; 

Preston & Eichenbaum, 2013). We explore learning 

mechanisms that could allow the mPFC to exert this 

kind of task-specific control over hippocampal 

representations. 

We propose a stimulus-computable Mixture-

of-Experts system (MoE; Jacobs et al., 1991) 

composed of two experts imbued with properties of 

the MSP and TSP, and an mPFC-inspired output-

gating network that controls their deployment. 

Trained end-to-end simultaneously on episodic and 

category learning tasks, the system (i) learns an 

optimal policy for engaging each expert based on task 

demands, and (ii) outperforms models lacking a 

learned gating mechanism, demonstrating the critical 

role of the gating mechanism and its co-adaptation 

with the experts during training. Together, these 

findings suggest how an mPFC-like gating 

mechanism enables the flexible use of 

complementary hippocampal representations, 

offering an account of how the brain balances 

specificity and generalization in memory-guided 

behavior. 

Results 

The MoE system (Fig 1A) comprised two single 

hidden layer neural network experts, each 

incorporating properties of hippocampal subfield 

circuitry. The TSP expert featured a larger hidden 

layer, sparse connectivity, and k-Winner-Take-All 

inhibition, while the MSP expert had a smaller hidden 

layer, full connectivity, and no inhibition. Both experts 

generated predictions for category and exemplar 

tasks. An mPFC-inspired gating network, consisting 

of a small hidden layer and two output units, produced 

task-specific mixture coefficients αcat and αexem. For 

each input, the final prediction for each task was 

computed as the linear combination of expert 

predictions: αtaskMSPpred + (1 − αtask)TSPpred. 

The system was trained end-to-end, with 

parameters updated with respect to the summed loss 

across tasks. Post-training MSP representations 

were more sensitive to category structure than those 

of the TSP, consistent with their distinct architectural 

biases (Fig 1B). 



 

 

 

 

 

 

 

 

 

 

Figure 1: Mixture-of-experts system architecture, tasks, 

and representations. (A) The system included MSP and 

TSP experts and mPFC-like gating. Inputs were extracted 

from the decoder-avgpool layer of CORnet-S, a CNN 

pretrained on ImageNet and designed to approximate the 

primate ventral visual stream (Kubilius et al., 2019), and 

passed to both experts and the gating network. The gating 

network generated mixture coefficients to compute final 

weighted predictions from expert outputs. Training was 

performed for 500 epochs on a 100-image subset of 

Fashion-MNIST (10 per category; Xiao et al., 2017), with 

each image presented once per epoch. (B) Post- training 

MSP and TSP hidden-layer representations for a subset of 

categories. 

 

With training, the MSP expert specialized in 

the category task and the TSP expert in the exemplar 

task (Fig 2A). The MoE system leveraged these 

specializations via mPFC gating, assigning higher 

(MSP-favoring) αcat values for the category task and 

lower (TSP-favoring) αexem values for the exemplar 

task (Fig 2B). The system also engaged the TSP on 

the category task, consistent with prior findings 

(Heffernan et al., 2021; Sučević & Schapiro, 2023), 

allowing it to outperform MSP alone. To probe gating 

behavior, we examined how α values varied with 

image-level similarity. There was a positive 

correlation between an image’s assigned αcat and its 

similarity to other category members (ρ = .081, W = 

1497, p < .001), suggesting that MSP is favored for 

category-consistent inputs, while TSP is recruited for 

atypical ones. Conversely, αexem was negatively 

correlated with similarity to all images (ρ = -.188, W = 

803, p < .001), indicating greater TSP involvement 

when fine-grained discrimination is needed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Task performance and learned mixture 

coefficients. (A) Performance on the category and exemplar 

tasks for the MoE system and individual MSP and TSP 

experts. Dashed line indicates chance. (B) Learned mPFC 

mixture coefficients for the category and exemplar tasks. 

Dashed line indicates α = 0.5. Error bars represent +/- SEM 

across 100 network initializations. 

 

Finally, to assess the importance of adaptive 

gating, we compared our end-to-end system to two 

alternatives: (i) a system with fixed mixture 

coefficients (α = 0.5), and (ii) independently trained 

experts combined via equal-weight ensembling at 

test. Both alternative systems showed degraded 

category task performance (Fig 3A) and impaired 

generalization to held-out images (Fig 3B), 

demonstrating that simple mixing is insufficient — 

adaptive gating must be learned alongside the 

experts. 

 

 

 

 

 

 
 

Figure 3: Performance on the (A) category task and  

(B) generalization across model variants with learned 

gating, static gating, or ensemble averaging. 

Conclusion 
Our model offers an account of how the mPFC could 

learn to flexibly coordinate complementary 

hippocampal pathways to support task-appropriate 

memory use. We demonstrate that the mPFC 

benefits from learning its gating concurrently with 

current task learning, though in the real environment 

it is possible that prior relevant tasks could contribute 

to training the gating relationship. This work provides 

a solution to how the brain may resolve competing 

demands on memory through learned control over 

hippocampal representations.  
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