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Abstract
Functional Magnetic Resonance Imaging (fMRI) studies
often use dimensionality reduction methods like indepen-
dent component analysis or diffusion map embedding to
identify group-level brain networks and dynamics. These
approaches struggle to capture individual-specific differ-
ences. To address this gap, we explore the use of varia-
tional autoencoders (VAEs) to model Blood Oxygen Level
Dependent (BOLD) signals in a subject-specific latent
space. Our approach effectively denoises fMRI data using
a compressed, low-dimensional latent representation, en-
hancing the separation of signals from distinct functional
networks without directly aligning them to specific latent
axes. While direct alignment of latent dimensions across
subjects is not straightforward, we observe shared geo-
metric patterns across subjects’ latent spaces, enabling
meaningful cross-subject comparisons. Deep latent mod-
eling offers a promising avenue for individualized fMRI
analysis, providing new insights into the brain’s complex
functional architecture.

Introduction
Functional Magnetic Resonance Imaging (fMRI) measures
brain activity over time by detecting changes in blood flow.
Functional networks and brain states can be revealed using all
three fMRI paradigms (rs: resting-state, tb: task-based, and
naturalistic). Naturalistic and tb-fMRI paradigms offer the ad-
vantage of better experimental control and engagement com-
pared to rs-fMRI, allowing for the identification of time-locked
neural activity patterns that are comparable across subjects.

In this study, we leverage a naturalistic fMRI dataset (Finn
et al., 2018), where participants listened to a narrative. Us-
ing minimally preprocessed fMRI data, we explore the ca-
pacity of deep latent models—specifically Convolutional Vari-
ational Autoencoders (CVAEs) (Wang et al., 2024) to reveal
individual-specific patterns in the Blood Oxygen Level Depen-
dent (BOLD) signals. CVAEs are effective for fMRI time series
analysis because their 1D convolutional architecture captures
temporal patterns and dependencies in BOLD signals while
reducing noise through dimensionality reduction, whereas the
variational component allows us to model the underlying prob-

ability distribution of BOLD signals, accounting for the inherent
variability in neural responses across time and subjects. Ad-
ditionally, by processing the time course for each voxel inde-
pendently, the model can learn consistent temporal features
across the brain while preserving spatial variations that reflect
individual-specific functional organization.

Methods

Dataset We re-analyzed a naturalistic fMRI dataset from
OpenNeuro (ds001338) featuring 22 healthy participants
(Finn et al., 2018). During the experiment, participants lis-
tened to an original 22-minute audio narrative describing an
ambiguous social scenario designed to elicit varying inter-
pretations and emotional responses. We worked with the
minimally preprocessed version of the data provided by the
Naturalistic Data Analysis repository. Preprocessing involved
fmriprep for standard corrections, followed by smoothing
and General Linear Model (GLM) fitting.

The preprocessed fMRI data consists of 4D whole-brain
volume activations over time. We reshaped the data into a 2D
matrix with dimensions (voxels × time points) for each subject.
To extract the time series and anatomical labels of relevant
voxels, we used the Schaefer atlas (2018) with 200 parcella-
tions mapped to the Yeo 17 networks (Schaefer et al., 2018)
and applied the MNI152NLin2009cAsym brain mask. This re-
sulted in a 139,501 (voxels) × 1,310 (time points) matrix for
each participant. We normalized the BOLD time series to a
range of [0,1] using the MinMaxScaler from sklearn.

Model Architecture and Training We used a 1D CVAE to
process the temporal BOLD signals. Both the encoder and
decoder networks consist of eight convolutional layers and
two fully connected layers. The data for each subject was
randomly split into training (70%), validation (10%), and test
(20%) sets. We trained the models using mini-batches, where
each batch comprised 280 voxels × 1,310 time points. The
standard VAE loss function combines a Reconstruction Loss
and a KL Divergence (Kingma et al., 2019). However, for this
study, we set the KL divergence term to zero for two main rea-
sons: (i) Training Stability: KL divergence often requires an-
nealing strategies to ensure stable training (Joas et al., 2024).

https://openneuro.org/datasets/ds001338/
https://naturalistic-data.org/content/Download_Data.html


(ii) Focus on Latent Structure: Our primary goal was not to
train a generative model but to analyze the latent embeddings
produced by the encoder. We trained a separate CVAE model
for each of the 22 subjects to capture subject-specific latent
representations. The models were implemented using Py-
Torch Lightning and trained on an A100 GPU. We used Adam
with a learning rate of 0.001 and early stopping with a patience
of 100 epochs.

To explore the impact of latent space dimensionality on re-
construction quality, we trained the CVAE for each subject us-
ing latent dimensions ranging from 2 to 16. We evaluated the
reconstruction performance on the test set for each configura-
tion, measuring the Mean Squared Error (MSE) between the
input and reconstructed BOLD signals. Trading off reconstruc-
tion fidelity and model complexity, we empirically selected a
9D latent space for all analyses.

Results
Deep autoencoders for BOLD signal denoising To as-
sess the denoising performance of the CVAE, we analyzed
reconstructed BOLD signals from one subject (Subject 1). We
compared the mean squared error (MSE) between input and
reconstruction on a subset of 2,000 randomly selected vox-
els. The average MSE in the sample was 0.0011, indicating
that the CVAE effectively reconstructs the temporal dynamics
of the BOLD signals. We conducted a cross-subject analysis
for validation, where the second subject’s data was passed
through the pre-trained model of the first subject. The MSE er-
ror between the input and the decoded data was 0.019, about
an order of magnitude higher than the previous result, indicat-
ing that learned latent embeddings of BOLD signals are not
trivially aligned.

To check for spatial inhomogeneities in reconstruction, we
examined whole-brain reconstructions at an arbitrary time
point (t = 900), which produced an empirical mean square
error (EMSE) of 0.0015 between the input and reconstructed
volumes. This suggests that the reconstruction quality is con-
sistent across both voxels and time points. To quantitatively
assess the denoising capability of the CVAE, we computed
the temporal Signal-to-Noise Ratio (tSNR) for each voxel. In
Subjects 1–5, the reconstructed BOLD signals demonstrated
higher tSNR values, confirming that CVAE effectively reduces
noise while preserving relevant neural signals. The average
tSNR improvements were 4.98%, 4.83%, 6.46%, 4.61%, and
5.36%, respectively. These improvements in tSNR were sta-
tistically significant (p < 1e−308, Wilcoxon signed rank test)
in all cases. These results demonstrate that CVAE can suc-
cessfully embed, reconstruct, and denoise BOLD time series
at the voxel level. The learned latent representations not only
capture essential temporal dynamics, but also enhance signal
quality.

The structure of encoded latent representations We fur-
ther assessed relationships between latent dimensions by cal-
culating pairwise correlations. The correlations were relatively
low (all below 0.3), suggesting that latent dimensions capture

generally distinct features, despite the absence of orthogo-
nality constraints. Compared to diffusion embedding, which
typically emphasizes large-scale cortical gradients, our CVAE-
based representations appear to reflect more individual-level
variations and finer-scale structures. PCA and ICA visual-
izations of the latent space show a more uniform distribution
of voxels with respect to the Yeo 17 networks, suggesting
that CVAE reduces noise and captures generalized patterns
across networks. However, we did not observe clear cluster-
ing based on network labels, indicating that latent space pre-
serves functional structure without explicitly aligning to prede-
fined network boundaries. In general, CVAE encodes BOLD
signals in a low-dimensional space that captures smooth,
anatomically coherent patterns while maintaining minimal cor-
relations between dimensions. Although the latent dimensions
do not directly map onto known functional networks, they ap-
pear to retain aspects of brain organization at the subject level.

Aligning latent representations across subjects Since
each subject was trained independently with a CVAE, the re-
sulting latent representations were not initially aligned across
subjects, leading to subject-specific embeddings. To exam-
ine the alignment of latent spaces across subjects, we ap-
plied Orthogonal Procrustes (Sasse et al., 2024) analysis to
evaluate the consistency of the learned embeddings. The la-
tent spaces did not align well between the individuals, proba-
bly reflecting differences in brain function rather than random
noise, suggesting that the embeddings capture meaningful,
subject-specific information. This misalignment indicates that
our method preserves individual differences that would be lost
in models forcing cross-subject alignment during training.

Discussion

In this study, we demonstrated that convolutional variational
autoencoders (CVAEs) can effectively denoise BOLD signals
at the voxel level and generate subject-specific latent repre-
sentations. These embeddings 1) accurately reconstruct fMRI
time series, 2) capture brain organization patterns that im-
prove the separability of Yeo17 networks without strictly align-
ing to known gradients, 3) provide a reference frame for com-
paring latent spaces across subjects, and 4) enable geometric
methods to assess functional connectivity. Beyond denoising,
CVAEs offer a flexible framework for embedding fMRI data into
lower dimensional latent spaces useful for visualization and
similarity analysis. They also hold potential for detecting out-
liers and generating new BOLD samples—areas that warrant
future exploration.

In future work, we aim to examine the influence of the KL di-
vergence term on reconstruction performance and to explore
the extent to which it affects the separability of latent represen-
tations (Higgins et al., 2017). A key limitation of our approach
is the need to train separate models for each subject, which
limits scalability. A potential solution is to develop models that
learn shared embedding spaces across subjects Huang et al.
(2022), enabling generalization to new participants and mak-
ing the method more practical for large-scale studies.
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