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Abstract

Model comparison is central to all scientific progress. In
sensory neuroscience, a key challenge is that distinct
models often make similar neural predictions due to cor-
relations between distinct features in the tested stimu-
lus set. Here, we show how to distinguish models for
a full neural population by designing a targeted “univer-
sally controversial” stimulus set that makes distinct, high
variance predictions across an entire sensory cortical
system (human auditory cortex) in every subject tested.
We applied to compare the neural prediction accuracy
of standard artificial neural networks (ANNs) from ANNs
trained to be robust to “adversarial attacks”. Standard
ANNs are notoriously vulnerable to small stimulus per-
turbations that can substantially alter the network’s de-
cisions without meaningfully altering human perception.
Yet, we find that the prediction accuracy of standard and
robust ANNs in the human auditory cortex is virtually in-
distinguishable when measured using fMRI responses to
natural sounds. In contrast, when tested with controver-
sial stimuli, the cortical prediction accuracy of the robust
model remains high throughout the auditory cortex, while
the predictive power of the non-robust model drops to
near zero. Universal controversiality thus opens the door
to much more powerful model comparisons in sensory
neuroscience and demonstrates a strikingly uncontrover-
sial model improvement from adversarial training.
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Introduction

A key goal of sensory neuroscience is to build computational
“encoding” models that can accurately predict the neural re-
sponses of a sensory system to a complex stimulus such as
speech. Over the past decade, researchers have constructed
increasingly sophisticated encoding models that are capable
of predicting responses to complex natural stimuli in part by
leveraging advances in deep learning and machine learning
(Yamins et al. (2014), Vaidya et al. (2022), Kell et al. (2018),
Tuckute et al. (2023)). A key challenge with this approach is
that distinct encoding models often make highly similar pre-
dictions for natural stimuli, making it difficult to adjudicate be-
tween competing models. This problem is fundamental to
model comparison in sensory neuroscience and developing
effective methods to solve it would thus be a major advance.
An important example of this problem arises when com-
paring the neural predictive performance of different artificial
neural network (ANN) models. ANNSs trained on challenging
tasks, such as speech and object recognition, are state-of-the-
art in predicting neural responses to natural stimuli (Kell et al.
(2018), Hosseini & Fedorenko (2023), Tuckute et al. (2023)).
However, distinct ANN models often make very similar neural
predictions for natural stimuli, even when their internal rep-
resentations differ substantially (Feather et al. (2023)). For
example, standard ANNs are notoriously sensitive to small

perturbations that can radically change the network’s behav-
ior (“adversarial attacks”) without substantially altering human
perception of a stimulus (Goodfellow et al. (2015), Tramer et
al. (2018)). Incorporating adversarial examples in DNN train-
ing (adversarially-robust (AR) models) substantially improves
this issue Madry et al. (2017), and helps align the model with
human perceptual judgments (Gaziv et al. (2023); Feather et
al. (2023)), yet standard and AR models make nearly identi-
cal neural predictions for fMRI responses to natural auditory
stimuli, as we show (Fig. 1A).

Competing models can be effectively compared by finding
stimuli that yield distinct behavioral responses (Wang & Si-
moncelli (2008); Golan et al. (2020)), but extending this ap-
proach to neuroscience has been difficult. A key challenge
is that most neuroscience experiments sample hundreds or
thousands of neural responses, and it is not feasible to design
a new stimulus for each response. To address this problem,
we develop an approach for synthesizing stimuli that are con-
troversial across an entire sensory cortical system (universally
controversial stimuli or UCSs).

Correlated Predictions Prevent Natural Sounds
From Distinguishing Models

We first tested if it was possible to distinguish between stan-
dard and AR ANNSs using natural sounds. We selected a con-
volutional neural network trained to predict spoken words with
background sounds. This model has shown strong neural pre-
dictive performance in the human auditory cortex (Tuckute et
al. (2023)), but as with most ANNSs, it is highly sensitive to ad-
versarial attacks. We compare this ANN to a variant trained
to be robust to ¢»(e = 1) adversarial attacks applied to the
cochleagram (Feather et al. (2023)).

We fit encoding models using standard and AR ANNs (de-
noted ES and EAR| respectively) to fMRI voxel responses from
30 subjects from two prior studies (Norman-Haignere et al.
(2015), Boebinger et al. (2021)). Each voxel was modeled
as a weighted sum of the units from a single model layer (via
ridge regression) and we selected the layer that best predicted
the response separately for each voxel and model. We found
that the accuracy of predictions from ES and EAR to a test
set of sounds was very similar (Fig 1A), prima facie (55 non-
overlapping sounds were used for training and testing). Simi-
lar predictive performance could imply the models are equally
good neural models but could also reflect correlated predic-
tions. To test this possibility, we correlated the predictions be-
tween the two models in the test set. We found that the cor-
relations were very high (Fig 1B) and approached the max-
imum possible correlation given by training the same model
on two non-overlapping training sounds. Since the model pre-
dictions (ES and EAR) are so similar, the neural data cannot
adjudicate between the models and the prediction accuracy is
guaranteed to be similar.
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Figure 1: A. Individual and group-averaged prediction accuracy of standard (left) and adversarially-robust (AR, right) encoding
models in predicting human fMRI responses to natural sounds. B. Correlations between model predictions for natural sounds
(left) and synthesized controversial sounds (right). The models are the same as those shown in A. C. Scatter plots showing
correlations between standard and AR model predictions for voxels from a single subject (top) and at group level (bottom) from
subjects not used for sound synthesis. D. Prediction accuracy of standard (top) and AR (bottom) models to natural (left) and
controversial sounds in a new group of subjects also not used for synthesis.

Synthesized Sounds Decorrelate Model
Predictions Throughout Auditory Cortex

We tested whether it was possible to synthesize a single
sound set § that would be universally controversial in the au-
ditory cortex (Fig 1B), defined as yielding low correlations be-
tween the predicted responses E5(S) and EAR(S). Addition-
ally, we wanted the neural response to the new sound set to
maintain high variance to ensure high signal power relative to
MRI measurement noise. To accomplish these two goals, we
minimized the following loss function:
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where V is the set of voxel indices, and C; and V/* are pre-
specified target values for the covariance and variance of pre-
dictions for voxel i, respectively. (1) measures the covariance
between the prediction of two models for all sounds, and (2)
measures the difference between predicted variance and a
desired variance target. In this work, we target 0 covariance
for all voxels (C; = 0V i). It is not important that we hit our
variance target, only that we push the model to generate high
variance stimuli, and we therefore set the variance target to
be high (5 times that for natural sounds), which did not im-
pede our ability to minimize the covariance term.

The synthesized sounds differed from natural sounds, as
expected, but nonetheless exhibited interesting and complex
acoustic structure. There were speech-like sounds with tone-
complexes and formant-like structure, frequency-modulated
inharmonic tones, amplitude-modulated noise, and dense
tone and noise clouds with varied frequencies and spec-
trotemporal modulation patterns. To evaluate whether our
sound set was consistently controversial, we measured the
correlation of our predictions for an entirely new set of 20 sub-
jects whose voxels were not used to synthesize the sounds.

We found that this approach was strikingly successful. In
nearly every voxel at the individual subject level and in liter-
ally every voxel at the group level, we found that the contro-
versial sounds had lower correlation than the natural sounds
(Fig 1C; p < .001, Wilcoxon). The predicted variance was
also somewhat higher than that for natural sounds as intended
(p < .001, Wilcoxon). Because the voxels and subjects used
to measure these statistics were not used for sound synthesis,
these results demonstrate that we have synthesized a set of
sounds that are universally controversial for any region of the
auditory cortex in any subject tested.

Universally controversial sounds reveal near
universal improvements from adversarial
training
We conducted an fMRI experiment where we measured re-
sponses to both natural and controversial sounds from a new
set of 6 subjects. We again fit encoding models using the nat-
ural sounds and we correlated the measured fMRI response
with the model-predicted response to both the controversial
sounds and independent set of natural sounds not used to fit
the model. For natural sounds, we found that the prediction
accuracy was nearly indistinguishable for standard and AR
models, replicating our prior results. In contrast, for the con-
troversial sounds, we observed a dramatic difference. Specif-
ically, the prediction accuracy for the robust model was in
fact slightly higher for controversial sounds than for natural
sounds, likely due to variance maximization. In contrast, the
prediction accuracy for the standard ANNs dropped to near
0. Thus, in virtually every voxel in the auditory cortex, contro-
versial stimuli provide a stronger approach for model compari-
son, compared with natural sounds, revealing a near universal
improvement in model prediction accuracy from adversarial

training that is masked when using natural stimuli alone.
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