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Abstract 12 

Stroke is a leading cause of disability worldwide. 13 

Predicting functional outcomes is challenging 14 

due to heterogeneity in post-stroke deficits and 15 

recovery profiles. We assessed prediction 16 

accuracies of 101 chronic outcomes from 78 17 

acute behavioral measures and (hypothesizing 18 

redundancy in the predictors) from low-19 

dimensional embeddings thereof. Nonlinear 2D 20 

UMAP embeddings yielded predictions 21 

comparable to those from all predictors. We 22 

identified brain damage patterns associated with 23 

specific behavioral profiles (extrema of the 24 

patient distribution in UMAP embeddings). We 25 

show that predictions based on only four acute 26 

tests—chosen as best linear approximations to 27 

UMAP embeddings—matched prediction 28 

accuracies from all 78 tests, suggesting 29 

nonlinear dimensionality reduction offers novel 30 

and interpretable tools for understanding 31 

behavioral outcomes of brain lesions and clinical 32 

assessment. 33 
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Introduction 37 

Stroke (if survived) impacts independence and 38 

quality of life. Predicting long-term effects 39 

immediately after the stroke is challenging, as 40 

deficits can change dramatically from the first weeks 41 

post-stroke (acute) to several months later (chronic). 42 

Moreover, large variations are seen across patients 43 

in both initial deficits and recovery profiles. Prior 44 

work has identified low-dimensional latent structures 45 

in post-stroke deficit patterns (Corbetta et al., 2015). 46 

Here, we assessed the ability of embeddings to 47 

predict chronic outcomes in stroke patients.  48 

 We leveraged a unique dataset (Corbetta et 49 

al., 2015) with extensive behavioral testing in both 50 

the acute (7–14 days post-stroke) and chronic (3 51 

months) recovery epochs. 78 cognitive and motor 52 

measures were used to predict 101 functional 53 

outcomes (i.e., quality of life measures that assess 54 

independence and ability to perform daily life tasks) 55 

with data from 96 adult patients (45 female, mean 56 

age=53.8 ± 11.1 years). We compared the predictive 57 

accuracy of low-dimensional embeddings from 58 

several dimensionality reduction techniques to 59 

assess the most predictive patterns and measures 60 

within the acute data.  61 

Predicting Chronic Outcomes 62 

We used ridge regressions to predict chronic 63 

functional outcomes as measured by commonly 64 

utilized measures (Hall et al., 1993; Wood-65 

Dauphinee et al., 1988; Ware et al., 1992; Bergner 66 

et al., 1976; Brott et al., 1989). The acute behavioral 67 

measures (i.e., predictors) evaluated visuospatial 68 

attention, language, memory, and motor function.  69 

 Prediction accuracies (i.e., correlation R2 70 

between predicted and measured outcomes across 71 

patients) were cross-validated over 50 repeats using 72 

randomly selected 80/20% train/test splits (Fig. 1). 73 

To safeguard against overfitting, the same was 74 

applied to scrambled-data yielding poor predictions.  75 

We extend prior work investigating latent 76 

structures in post-stroke behavioral data with 77 

Principal Component Analysis (PCA) (Bisogno et al., 78 

2021) and Factor Analysis (FA) (Bowren et al., 2020) 79 

by comparing the prediction accuracy obtained from 80 

several linear and nonlinear latent embeddings of 81 

acute behaviors. Embeddings were derived with 2, 82 

4, 8, and 16 dimensions using several 83 

dimensionality reduction tools: PCA, FA, K-Means 84 

clustering, hierarchical agglomerative clustering, and 85 

Uniform Manifold Approximation (UMAP). UMAP, 86 

uniquely among the tools we tested, identifies a 87 

nonlinear n-dimensional manifold within the original 88 

space, upon which the data is distributed (McInnes 89 

et al., 2018). The prediction accuracy obtained from 90 

each embedding was compared to those obtained 91 

from all tests using a Wilcoxon signed-rank test (Fig. 92 

1). 93 

Predictions obtained from the UMAP 94 

embedding dimensions were as accurate as those 95 

from all tests, regardless of the number of 96 

embedding dimensions (Fig. 1). These results were 97 



replicated using different random seeds for the 98 

UMAP embedding (not shown). 99 

 100 
Figure 1: Prediction accuracies (distribution across 101 

all 101 outcomes) obtained from acute measures 102 

before (blues) and after compression with various 103 

tools and when using scrambled data (black). Hollow 104 

boxes denote embeddings with “optimal” number of 105 

dimensions, where standard methods allow. (α =.05; 106 

Bonferroni-corrected; dots show prediction accuracy 107 

was statistically indistinguishable from those derived 108 

from all data) 109 

Exploring the UMAP Embedding 110 

As UMAP embeddings of behavior robustly 111 

predicted outcomes, we examined their relationship 112 

to neural and behavioral data. We focused on 4D 113 

embeddings, which also predicted chronic 114 

neuropsychological test performance (not shown). In 115 

an exploratory lesion-symptom mapping analysis, 116 

we replaced traditional “symptoms” (i.e., test scores) 117 

with patient “location” in UMAP space, defined as 118 

distance from eight extremal reference points 119 

arbitrarily chosen at the edges of the patient 120 

distribution (Fig. 2). We applied sparse canonical 121 

correlation analysis for neuroimaging (Pustina et al., 122 

2018), which identifies and cross-validates 123 

multivariate correlations between lesion anatomy 124 

(i.e., a binary lesion mask) and behavior.  125 

 We identified statistically significant 126 

correlations between lesion location and patient 127 

distance from 4 of the 8  reference points (labeled 128 

‘A’—‘D’; each an extremal edge of the patient 129 

distribution in the 4D UMAP embedding). Proximity 130 

to ‘A’ and ‘B’ localized to partially overlapping brain 131 

regions in the left hemisphere; to ‘C’ and ‘D’ 132 

localized to partially overlapping regions in the right 133 

hemisphere, across subcortical (e.g., thalamus, 134 

putamen), insular cortex, and white matter regions. 135 

 136 
Figure 2: Voxels significantly associated with patient 137 

proximity to 4 reference points (‘A’–‘D’) in the 4D 138 

UMAP embedding of behavior profiles.    139 

 Robust prediction of chronic outcomes from 140 

a 4D embedding suggests substantial redundancy in 141 

the original 78 tests. We identified four acute tests 142 

that most strongly correlated with the UMAP 4D 143 

embedding dimensions: right (r=.69) and left (r=.78) 144 

Action Research Arm Test (ARAT; whole arm 145 

function from shoulder to fingers), left 9-hole 146 

pegboard (left finger dexterity; r=.71), and total 147 

spatial span score (visuospatial working memory; 148 

r=.80). Predictions from these four tests performed 149 

as well as those using all predictors (U=7637, 150 

p=.76).  151 

Conclusion 152 

This study shows that chronic functional outcomes 153 

of stroke recovery can be predicted from acute post-154 

stroke behaviors. Moreover, they can be predicted 155 

from latent UMAP embeddings (though not from 156 

linear embeddings). This suggests that the original 157 

tests contain redundancy, which nonlinear 158 

embeddings are well-suited to reveal.  159 

Lesion-symptom mapping revealed distinct 160 

anatomical substrates associated with patient 161 

“location” within a 4D UMAP embedding (i.e., a 162 

distinct behavioral profile) suggesting potential for 163 

clinical phenotyping. Moreover, predictions from only 164 

four acute measures (ARAT, left hand 9-hole 165 

pegboard, and Spatial Span total score; which 166 

comprise a best linear approximation to the UMAP 167 

embedding) yielded recovery predictions as 168 

accurate as those using all data, suggesting 169 

potential clinical applications of such approaches. 170 
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