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Abstract
Both vision and language signals contribute to real-world
social processing, yet they have been mostly studied sep-
arately. To understand how these inputs are simultane-
ously processed, we model individual participant’s brain
responses (n=34) to a naturalistic movie using vision and
language deep neural network embeddings. We find that
these embeddings share very little similarity in a natural-
istic movie, and they both predict brain responses in the
superior temporal sulcus (STS). Within STS, we identified
social interaction perception and language selective re-
gions in individual participants to examine how they pro-
cess vision and language signals in the movie. We found
that 1) social perception regions are best explained by
vision embeddings, but are also sensitive to sentence-,
but not word-, level information, 2) language regions are
well predicted by speech-, word-, and sentence-level em-
beddings and, surprisingly, equally well predicted by vi-
sion features as language features. However, 3) language
regions are exclusively sensitive to high-level visual in-
formation, whereas social perception regions (and lower
level visual regions) are sensitive to both low- and high-
level visual information. This work suggests that social
perception and language regions both integrate visual
and language signals, but the specific nature of these in-
tegrated representations vary across the STS.

Keywords: naturalistic stimuli; fMRI encoding; multimodal so-
cial processing

Introduction
In our daily lives, we effortlessly integrate visual and linguis-
tic signals, especially in social contexts. However, these two
inputs are often studied separately. Previous work using con-
trolled stimuli has mapped responses to diverse social sig-
nals, including visual (biological motion, faces) and linguistic
(voices, theory of mind, and language) input in the superior
temporal sulcus (STS), revealing regions highly selective for
social stimuli as well as regions responding to multiple modal-
ities (Deen et al., 2015). Recent work has shown that visual
social perception regions of the STS are sensitive to commu-
nicative interactions (McMahon et al., 2023) and meaningful
auditory interactions (Landsiedel & Koldewyn, 2023). This
suggests a critical interface with language. However, this uni-
modal work using cannot address how social and language
regions respond to simultaneous visual and linguistic inputs.
We bridge this gap using both unimodal controlled and audio-
visual naturalistic stimuli.

One powerful technique to analyze naturalistic data is build-
ing a linear mapping from stimulus to neural response. This
encoding model approach has been used to analyze re-
sponses to listening to stories or podcasts (Huth et al., 2016;
Schrimpf et al., 2021; Goldstein et al., 2022), and responses
to watching silent movies (Huth et al., 2012), but not the neu-
ral processing of both visual and linguistic signals from the
same naturalistic, socially-rich input. Here, we use deep neu-
ral networks to operationalize the visual and linguistic signals

of the movie and link them to neural responses, examining
responses within localized social perception and language re-
gions. We conduct variance partitioning to pinpoint the spe-
cific contributions of these complex feature spaces. We find
that both social perception and language regions integrate vi-
sual and linguistic signals, but to different extents.

Methods
fMRI. Participants (n=34, ages 19-35, 17 F) watched a 45
minute episode of the BBC series Sherlock. We followed the
experimental procedures in Chen et al. (2017). All partici-
pants completed a social interaction perception localizer (Isik,
Koldewyn, Beeler, & Kanwisher, 2017). A subset of partici-
pants (n=25) completed a language localizer (Scott, Gallée,
& Fedorenko, 2017). We identified the top 5% motion, so-
cial interaction and language selective voxels within the MT,
STS, and language parcels (which include STS as well as the
broader temporal lobe), respectively. The social interaction
and language voxels are non-overlapping in individual sub-
jects (DICE coef. of 0.05 in left and 0.04 in right).

Encoding model For each participant, the fMRI BOLD se-
ries for each voxel within an intersubject correlation mask was
predicted with a banded ridge regression model (Dupré la
Tour et al., 2022) using neural network embeddings of vi-
sion and language signals. We used time delays of 1, 3, 4.5,
and 6 seconds to account for variability in hemodynamic de-
lays across cortex and fit the model using 5-fold cross valida-
tion. To account for temporal autocorrelation, we chunked the
time series into continuous segments of 30s before splitting
into train and test sets. For vision, we extracted embeddings
from a motion energy model (pymoten (Nunez-Elizalde et al.,
2021) and from the seven layers of AlexNet (Krizhevsky et al.,
2012), which have previously been shown to predict visual re-
sponses in high-level visual cortex (Eickenberg et al., 2017).
For language, we extracted activations from all layers of a
speech transformer model (HuBert (Hsu et al., 2021)), a word-
level semantic model (word2vec (Mikolov et al., 2013)), and
a sentence-level transformer model (sBERT; all-mpnet-base-
v2, huggingface.co) of the spoken content of the episode. We
measured the similarity of these feature spaces with Canoni-
cal Correlation Analysis (Hotelling, 1936; Knapp, 1978).

From the encoding model, we examined the product mea-
sure, a measure of the predictive contribution of each feature
space that considers the correlation between feature spaces
(Dupré la Tour et al., 2022). We also performed structured
variance partitioning (Lin et al., 2024) to examine layer-wise
contributions in AlexNet.

Results
Vision and language embeddings share little similarity
There was high similarity between the vision model embed-
dings (AlexNet and motion) and language model embeddings
(speech, word, and sentence). Interestingly, there was little
correlation between the vision and language feature spaces
(Figure 1A).
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Figure 1: A) Feature similarity of vision and language model embeddings. B) Representative preference map showing which
feature explains the most variance in each voxel (projected to surface) C) Product measure (averaged over participants) of each
feature space within the joint model. Significant vision>language in motion and social interaction, no difference in language.

Vision and language embeddings both predict STS re-
sponses The joint encoding model explains significant
group-level variance (corrected p<0.001) in all ISC mask vox-
els. Most voxels are best predicted by vision (AlexNet) fea-
tures in individual brains, although there are portions best ex-
plained by sentence-level features, including in the STS (Fig-
ure 1B). However, in individually localized regions, we find
strong visual feature predictivity in not only motion (a con-
trol visual region) and social perception regions, but also lan-
guage regions. Follow-up work with more advanced vision
and language models (SimCLR, GPT-2) showed a similar
trend, with an even stronger advantage for vision models in
language regions (not shown for space). We do find signifi-
cant predictivity of speech, word, and sentence-level features
in language regions, but only sentence features in the social
perception regions (Figure 1C).

Figure 2: Structured variance partitioning of AlexNet layers.
Opaque bars indicate a significant non-zero addition.

High-to-low-level visual feature contributions To delin-
eate the contributions of high- to low-level visual features,
we iteratively added AlexNet layers from the last to first layer
to our encoding model, examining whether earlier layers ex-
plained additional variance on top of later layers (Lin et al.,
2024). In motion and social perception regions, both late and
early layers explained additional variance, indicating sensitiv-
ity to low-level visual features. However, in language-selective
regions, no early layers explained additional variance, sug-
gesting a sensitivity exclusively to mid-to-high-level visual fea-
tures (Figure 2).

Discussion
In this work, we make several contributions towards under-
standing how humans process naturalistic, socially-rich, au-
diovisual stimuli.

We found that neural network embeddings of the visual and
linguistic signals are not aligned over the course of a natural-
istic movie. This illustrates an additional perspective (Small et
al., 2024) to recent work emphasizing the alignment between
language model representations of images and human high-
level vision and deep vision models (Huh et al., 2024; Doerig
et al., 2024).

Both vision and language neural network embeddings ex-
plained variance across the brain, but vision models domi-
nated prediction in social visual regions and equaled language
model predictivity in language regions. Structured variance
partitioning revealed key differences between these nearby re-
gions. Language regions were only explained by high-level vi-
sual features, building on previous work showing some sensi-
tivity to meaningful visual semantic information (Sueoka et al.,
2024). This contrasts with social perception regions, which
displayed sensitivity to high- and low-level visual features. Al-
though visual features dominated prediction, sentence fea-
tures predicted social perception regions, while language re-
gions were also well-predicted by speech and word features.

Our work points to an interaction between the visual and
linguistic systems supporting social interaction perception.
Specifically, social perception and language regions could be
exchanging high-level social visual information and sentence-
level language information, while each represent distinct infor-
mation about lower-level vision/language information. Study-
ing these multimodal regional interactions in natural contexts
is an exciting direction for future work.
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