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Abstract

Flexible cognition entails a rapid adaptation of stimulus-
response mappings. Standard neural networks strug-
gle in tasks requiring rapid remapping. Here, we pro-
pose the Wisconsin Neural Network (WiNN), which gener-
alizes fast-and-slow learning to real-world tasks demand-
ing flexible behavior, using adjustable context states that
duide attention in a pretrained convolutional neural net-
work. We evaluate WiNN on a variant of the Wisconsin
Card Sorting Task, revealing several markers of cognitive
flexibility: (i) WiNN autonomously infers underlying rules,
(ii) requires fewer examples than control models reliant
on large-scale parameter updates, and (iii) can perform
rule inference solely via context-state adjustments. This
approach offers a path toward context-sensitive models
that retain knowledge while rapidly adapting to complex,
rule-based tasks.
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Model and learning dynamics

WINN consists of four elements: 1) A four-layer convolu-
tional network, pretrained on MiniEcoset (Thorat et al., [2023)
and frozen thereafter, a stand-in for an adult ventral stream
(Yamins & DiCarlo, [2016); 2) A linear readout converts the
backbone’s global-pooled activity into a binary judgment:
does the image satisfy the active rule or not? 3) A context
state which is internally updated to learn the current rule. 4) A
multiplicative attention matrix broadcasts the current context
state to every neuron in every convolutional layer, attending
features relevant to the current rule context (Lindsay & Miller,
2018;|Singer et al., [2024).

Whenever WINN errs, learning proceeds in two stages, in-
spired by |Hummos| (2023). An inner loop performs up to
100 gradient steps on only the context vector (learning rate =
10*2), shifting attention just far enough to correct the decision.
A single outer step then updates the attention and readout
(add-on) weights at a much smaller rate (10‘4), leaving the
backbone unchanged. Separate optimizers maintain the strict
fast—slow separation, so perceptual features remain reusable
while context and the add-on weights absorb task drift.

Experimental protocol

WINN tackles an image-based analogue of the Wisconsin
Card Sorting Test. In each block, of 800 unique stimuli drawn
from the 3D-Shapes dataset, a hidden single-factor rule—floor
colour, wall colour, object colour or object shape—governs
the “yes” class. To construct the various blocks, three values
per factor are sampled, yielding 12 blocks in total. This sam-
pling is repeated 10 times to construct as many experiments.
A held-out validation set gauges generalization, while an ex-
tended context-inference set tests whether WiNN can adapt
by moving its context state alone. That set includes (i) seen

single-factor rules, (ii) unseen rules which contain unseen val-
ues of seen factors, and (iii) novel compositional rules formed
by conjoining two seen single-factor rules.

Five control models were used as comparisons: 3 pre-
trained CNNs that get similar/different data diets and learning
rates as WiNN: Either the CNN gets no repetitions of the same
image (CNN No Repeat), or it gets repetitions with either 10>
(CNN 100x Repeat) or 10~* (CNN 100x Repeat Slow) learn-
ing rates - analogous to the inner-loop context state update.
In addition, we used two versions of WiNN, one with a random
backbone and one with frozen attention and readout weights.

Results

Results are shown in Figure. [1]

Efficient rule discovery After convergence, WiNN reaches
the 90 % validation-accuracy threshold in far fewer images
than any control model, demonstrating quicker extraction of
the latent rule while keeping generalization high. Control mod-
els that update thousands of backbone weights either lag sub-
stantially or, when driven by large learning rates, catastrophi-
cally over-fit to the block in progress.

better generalization Although some control models even-
tually top 90 % on the training stream, their validation accuracy
remains several percentage points lower, signaling residual
over-fitting that WiNN largely avoids.

Context-only remapping With all synaptic weights frozen,
WINN’s inner loop still brings performance on previously seen
rules close to ceiling, and lifts accuracy on unseen simple and
compositional rules well above chance. Over successive se-
quences, context-only accuracy on novel compositional rules
even climbs steadily, showing that attention and readout lay-
ers have learned abstractions that can be recombined on the
fly. Ablations confirm that freezing attention and readout pa-
rameters cripples this ability. This underscores the synergy
between stable features, learned gain control and a malleable
context state.

Conclusion

By combining rapid context inference with slow, broadly-useful
weight updates, WiNN reconciles two goals often viewed as
incompatible in deep learning: instant behavioural remap-
ping and long-term knowledge retention. The model there-
fore supplies tangible “sparks of cognitive flexibility”—swift
adaptation to new or hidden rules, sample-efficient learn-
ing, resistance to catastrophic forgetting and compositional
generalization. Beyond its engineering value, WiNN rep-
resents a successful computational model of how thalamo-
cortical and fronto-parietal circuits might gate context in the
brain. Extending the same principles to richer memory stores,
language-conditioned context vectors or hierarchical/serial at-
tention could push artificial agents closer to the breadth of
human adaptive behavior while furnishing new, mechanistic
questions for systems neuroscience.
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Figure 1: (A) During an experiment, images are presented one at a time, and in blocks. Each block has a hidden rule. For each
image, the task is to decide whether it adheres to the hidden rule. After 800 images, a block ends and the hidden rule switches.
Importantly, there is no indication of a rule switch other than altered feedback. (B) Whenever WiNN produces an error, its context
state is updated iteratively to remap the network’s response. After 100 updates or if the response is correct, a single update is
applied to the attention and readout parameters. The backbone is kept frozen. (C) The Wisconsin Neural Network (WiNN) is
built for flexible rule inference over complex image streams. A pretrained convolutional neural network (CNN) maps the image
to a response that is modulated by the inferred context. The bottom panel specifies how the attention weights map the context
state ¢ modulation onto the /" CNN layer. (D) WiNN can infer rules better than the control models: it can better generalize the
seen stimulus-response mapping to unseen stimuli. WiNN can infer rules faster than the control models: it needs to see fewer
stimuli to be accurate on subsequent stimuli. In contrast, control CNNs suffer from an accuracy-efficiency tradeoff. In addition,
pretraining the backbone is important for WiNN’s efficient rule inference capability. (E) WiNN can infer previously seen simple
rules solely with context state updates. WiNN can also infer unseen simple rules and compositions of seen rules, although
not perfectly. This suggests that the learned context state/attention/readout mappings to and from the backbone are general
enough to extend to unseen rules, and especially to compositions of seen rules. Moreover, the inference of rules becomes better
through the experiment, suggesting meta-learning. WiNN with frozen attention/readout weights perform worse, indicating that
good generalization cannot be achieved by updating the context state alone and that appropriate attention/readout weights are
necessary for rule generalization.
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