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Abstract

We propose LangevinFlow, a sequential variational model
for neural population activity, where latent dynamics are
governed by the underdamped Langevin equation. This
framework captures both intrinsic neural dynamics and
external unobserved inputs through physically grounded
priors – incorporating inertia, damping, stochasticity, and
a learned potential landscape. The potential is param-
eterized as a locally coupled oscillator network, bias-
ing the model toward oscillatory and flow-like behaviors
observed in real neural circuits. Our architecture com-
bines a recurrent encoder, a one-layer Transformer de-
coder, and structured Langevin dynamics in the latent
space. LangevinFlow achieves strong empirical results:
it closely tracks ground-truth firing rates on synthetic
data driven by a Lorenz attractor, and outperforms prior
methods on the Neural Latents Benchmark across four
datasets in terms of both bits-per-spike and forward pre-
diction. It also matches or exceeds baselines in decoding
behavioral variables such as hand velocity. This work in-
troduces a compact, physics-inspired, interpretable, and
high-performing model for neural population dynamics.
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Introduction

Neural population activity exhibits low-dimensional latent dy-
namics that govern spiking variability over time (Shenoy et al.,
2013; Vyas et al., 2020). Modeling these structures is cru-
cial for understanding internal computation and external unob-
served inputs (Gallego et al., 2017). Prior work has explored
dynamical systems with inferred control inputs (Pandarinath
et al., 2018a), attractor landscapes (Genkin et al., 2023), and
Transformer-based models (Ye & Pandarinath, 2021) to model
both autonomous and externally driven neural processes.

We propose LangevinFlow, a sequential latent variable
model governed by underdamped Langevin dynamics. This
physically inspired formulation integrates key elements of neu-
ral computation: inertia, damping, stochasticity, and a poten-
tial function shaping attractor-like behavior. The potential is
parameterized as a locally coupled oscillator network, bias-
ing the model toward oscillatory and flow-like patterns consis-
tent with cortical rhythms and traveling waves (Buzsaki, 2006;
Churchland et al., 2012). The model uses a recurrent encoder
and a one-layer Transformer decoder within a variational au-
toencoding framework. The encoder captures local temporal

structure, while the Transformer integrates global latent con-
text to refine spike rate predictions.

Empirically, LangevinFlow accurately reconstructs synthetic
Lorenz-generated neural data and achieves state-of-the-art
performance on the Neural Latents Benchmark (NLB) (Pei et
al., 2021), outperforming baselines on neuron likelihoods and
behavior decoding across four datasets. Latent trajectories
reveal smooth spatiotemporal wave patterns, offering inter-
pretable insights into neural computation. Our results demon-
strate the utility of combining physics-inspired dynamics with
modern sequence models for neural data analysis.

Methodology
This section first introduces the underdamped Langevin equa-
tion, then present the sequential VAE framework, followed by
the model architecture and training algorithm.

Underdamped Langevin Equation
We seek to build a latent variable model which integrates the
desired beneficial inductive biases. From the physics litera-
ture, a canonical abstract model is the Langevin equation:

∂zzz
∂t

= vvv, m
∂vvv
∂t

=−∇zU(z)−mγvvv+
√

2mγkBτηηη(t) (1)

where zzz(t) is the latent position, vvv denotes the velocity, m is
a diagonal matrix of masses, γ is the damping (or friction) co-
efficient, kB is the Boltzmann constant, τ is the temperature,
ηηη(t) represents Gaussian white noise, and the potential func-
tion is parameterized as a locally coupled oscillator network:
U(zzz) = zzzT WWW zzz

||WWW zzz||2 zzz where WWW zzz ∈ Rd×d is the symmetric matrix
of coupling coefficients. This choice biases the latent space
toward smooth spatiotemporal oscillatory dynamics (Diamant
& Bortoff, 1969; Ermentrout & Kopell, 1984).

Sequential Variational Auto-Encoder
The observed spikes x̄xx are modeled as conditionally Poisson-
distributed given latent firing rates r̄rr. The joint generative dis-
tribution factorizes as:

p(x̄xx, z̄zz, v̄vv) = p(vvv0)p(zzz0)
T

∏
t=1

p(vvvt)δ(zzzt − fzzz(zzzt−1,vvvt−1))
T

∏
t=0

p(xxxt |zzzt ,vvvt) (2)

where zzzt is deterministically updated via Hamiltonian flow, and
vvvt is sampled using a stochastic transition. We optimize the
evidence lower bound (ELBO) using a sequential VAE frame-
work. The approximate posterior follows:

qθ(z̄zz, v̄vv|x̄xx) = q(zzz0|xxx0)q(vvv0|xxx0)
T

∏
t=1

δ(zzzt − fzzz(zzzt−1,vvvt−1))q(vvvt |zzzt−1,vvvt−1) (3)



Table 1: Results on MC Maze and MC RTT with the sampling frequency of 20 ms.

Methods
MC-Maze MC-RTT

co-bps (↑) vel R2 (↑) psth R2 (↑) fp-bps (↑) co-bps (↑) vel R2 (↑) fp-bps (↑)

Smoothing (Yu et al., 2008) 0.2076 0.6111 -0.0005 – 0.1454 0.3875 –
GPFA (Yu et al., 2008) 0.2463 0.6613 0.5574 – 0.1769 0.5263 –

SLDS (Linderman et al., 2017) 0.2117 0.7944 0.4709 -0.1513 0.1662 0.5365 -0.0509
NDT (Ye & Pandarinath, 2021) 0.3597 0.8897 0.6172 0.2442 0.1643 0.6100 0.1200

AutoLFADS (Pandarinath et al., 2018b) 0.3554 0.8906 0.6002 0.2454 0.1976 0.6105 0.1241
MINT (Perkins et al., 2023) 0.3295 0.9005 0.7474 0.2076 0.2008 0.6547 0.1099

LangevinFlow 0.3641 0.8940 0.6801 0.2573 0.2010 0.6652 0.1389

Table 2: Results on Area2 Bump and DMFC RSG with the sampling frequency of 20 ms.

Methods
Area2-Bump DMFC-RSG

co-bps (↑) vel R2 (↑) psth R2 (↑) fp-bps (↑) co-bps (↑) tp corr (↓) psth R2 (↑) fp-bps (↑)

Smoothing (Yu et al., 2008) 0.1529 0.5319 -0.1840 – 0.1183 -0.5115 0.2830 –
GPFA (Yu et al., 2008) 0.1791 0.6094 0.5998 – 0.1378 -0.5506 0.3180 –

SLDS (Linderman et al., 2017) 0.1816 0.6967 0.5200 0.0132 0.1575 -0.5997 0.5470 0.0374
NDT (Ye & Pandarinath, 2021) 0.2624 0.8623 0.6078 0.1459 0.1757 -0.6928 0.5477 0.1649

AutoLFADS (Pandarinath et al., 2018b) 0.2542 0.8565 0.6552 0.1423 0.1871 -0.7819 0.5903 0.1791
MINT (Perkins et al., 2023) 0.2718 0.8803 0.9049 0.1489 0.1824 -0.6995 0.7014 0.1647

LangevinFlow 0.2881 0.8810 0.7641 0.1647 0.1904 -0.5981 0.6079 0.1945

The velocity evolves via a learned Ornstein–Uhlenbeck tran-
sition. The ELBO objective includes a Poisson likelihood term
and KL regularization on latent variables and their transitions:

log p(x̄xx)≥
T

∑
t=0

Eqθ

[
log p(xxxt |zzzt ,vvvt)

]
−Eqθ

[
DKL [qθ(zzz0|xxx0)||p(zzz0)]

]
−Eqθ

[
DKL [qθ(vvv0|xxx0)||p(vvv0)]

]
−

T

∑
t=1

Eqθ

[
DKL [qθ(vvvt |zzzt−1,vvvt−1)||p(vvvt)]

] (4)

Model Architecture and Training Algorithm

The encoder is a GRU that processes input spikes and ini-
tializes latent variables. Latents then evolve via Langevin dy-
namics. A Transformer-based decoder maps the latent trajec-
tory to firing rate predictions, capturing both local and global
temporal dependencies. Training proceeds by alternating be-
tween Langevin updates and optimization of the ELBO. The
full algorithm is summarized in Alg. 1.

Table 3: R2 of the firing rates on Lorenz Attractor.

AutoLFADS NDT LangevinFlow

R2(↑) 0.921±0.005 0.934±0.004 0.944±0.003

Results

Table 3 shows that LangevinFlow achieves the highest R2 cor-
relation with ground-truth firing rates, outperforming all base-
lines. This indicates its superior ability to capture the un-
derlying neural dynamics. In Tables 1 and 2, LangevinFlow

achieves state-of-the-art performance on held-out neuron like-
lihood (co-smoothing bits per spike) and forward prediction.
It also performs competitively on behavioral metrics such as
hand-velocity decoding. While it lags slightly on PSTH R2,
this aligns with the known trade-off between co-bps and trial-
averaged correlation. Overall, the model demonstrates strong
and robust performance across diverse neural decoding tasks.

Algorithm 1 Training algorithm of our Langevin flow.
Require: Recurrent encoder GRU, Transformer-based se-

quence decoder Transformer, linear mapping for latent
variables n, input spike sequence x̄xx, and posterior qθ.

1: repeat
2: Initial hidden states: hhh0 = GRU(xxx0)
3: Initial latent variables: [zzz0,vvv0] = n(hhh0)
4: Time step counter: i = 0
5: while i ≤ T −1 do
6: Update position (deterministic step): zzzi+1 = zzzi + vvvi
7: Update velocity (deterministic step):

vvvi+ 1
2
= vvvi −∇zzzU(zzzi)/m

8: Update velocity (probabilistic step):
vvvi+1 = (1− γ)vvvi+ 1

2
+
√

2mγkBτ ηηη(i)
9: Update hidden states: hhhi+1 = GRU(xxxi+1,hhhi)

10: Concatenate variable sequences:
z̄zz = [zzz0:i,zzzi+1], v̄vv = [vvv0:i,vvvi+1], h̄hh = [hhh0:i,hhhi+1]

11: Update time step counter: i = i+1
12: end while
13: Predict firing rates: r̄rr = Transformer(z̄zz, v̄vv, h̄hh)
14: Optimize the ELBO.
15: until converged



References
Buzsaki, G. (2006). Rhythms of the brain. Oxford university

press.

Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Fos-
ter, J. D., Nuyujukian, P., Ryu, S. I., & Shenoy, K. V.
(2012). Neural population dynamics during reaching. Na-
ture, 487 (7405), 51–56.

Diamant, N., & Bortoff, A. (1969, February). Nature of the
intestinal low-wave frequency gradient. American Jour-
nal of Physiology-Legacy Content , 216(2), 301–307. doi:
10.1152/ajplegacy.1969.216.2.301

Ermentrout, G. B., & Kopell, N. (1984). Frequency plateaus
in a chain of weakly coupled oscillators, i. SIAM journal on
Mathematical Analysis, 15(2), 215–237.

Gallego, J. A., Perich, M. G., Miller, L. E., & Solla,
S. A. (2017). Neural manifolds for the con-
trol of movement. Neuron, 94(5), 978-984. doi:
https://doi.org/10.1016/j.neuron.2017.05.025

Genkin, M., Shenoy, K. V., Chandrasekaran, C., & Engel, T. A.
(2023). The dynamics and geometry of choice in premotor
cortex. bioRxiv . doi: 10.1101/2023.07.22.550183

Linderman, S., Johnson, M., Miller, A., Adams, R., Blei, D.,
& Paninski, L. (2017). Bayesian learning and inference in
recurrent switching linear dynamical systems. In Aistats.

Pandarinath, C., O’Shea, D. J., Collins, J., Jozefowicz, R.,
Stavisky, S. D., Kao, J. C., . . . others (2018a). Infer-
ring single-trial neural population dynamics using sequen-
tial auto-encoders. Nature methods.

Pandarinath, C., O’Shea, D. J., Collins, J., Jozefowicz, R.,
Stavisky, S. D., Kao, J. C., . . . others (2018b). Infer-
ring single-trial neural population dynamics using sequen-
tial auto-encoders. Nature methods.

Pei, F., Ye, J., Zoltowski, D., Wu, A., Chowdhury, R. H., Sohn,
H., . . . others (2021). Neural latents benchmark’21: eval-
uating latent variable models of neural population activity.
NeurIPS.

Perkins, S. M., Cunningham, J. P., Wang, Q., & Churchland,
M. M. (2023). Simple decoding of behavior from a compli-
cated neural manifold. BioRxiv , 2023–04.

Shenoy, K. V., Sahani, M., & Churchland, M. M. (2013). Cor-
tical control of arm movements: a dynamical systems per-
spective. Annual review of neuroscience, 36(1), 337–359.

Vyas, S., Golub, M. D., Sussillo, D., & Shenoy, K. V. (2020).
Computation through neural population dynamics. Annual
review of neuroscience, 43(1), 249–275.

Ye, J., & Pandarinath, C. (2021). Representation learning
for neural population activity with neural data transformers.
Neurons, Behavior, Data analysis, and Theory .

Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S.,
Shenoy, K. V., & Sahani, M. (2008). Gaussian-process fac-
tor analysis for low-dimensional single-trial analysis of neu-
ral population activity. NeurIPS.


