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Abstract
A recurrent neural network fitted to large electrophysio-
logical datasets may help us understand the chain of cor-
tical information transmission. In particular, successful
network reconstruction methods should enable a model
to predict the response to optogenetic perturbations. We
test recurrent neural networks (RNNs) fitted to electro-
physiological datasets on unseen optogenetic interven-
tions, and measure that generic RNNs used predomi-
nantly in the field generalize poorly on these perturba-
tions. Our alternative RNN model adds biologically in-
formed inductive biases like structured connectivity of
excitatory and inhibitory neurons, and spiking neuron dy-
namics. We measure that some biological inductive bi-
ases improve the model prediction on perturbed trials in a
simulated dataset, and a dataset recorded in mice in vivo.
Furthermore, we show in theory and simulations that gra-
dients of the fitted RNN can predict the effect of micro-
perturbations in the recorded circuits, and discuss po-
tentials for measuring brain gradients or using gradient-
targeted stimulation to bias an animal behavior.
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Introduction and state-of-the-art

We need both (1) data modeling approaches that scale well
with large-scale electrophysiology datasets (Siegle et al.,
2021; Esmaeili et al., 2021; Urai, Doiron, Leifer, & Church-
land, 2022; International Brain Laboratory et al., 2023), and
(2) metrics to quantify when the models provide a plausible
mechanism for the observed phenomena.

Figure 1: Method overview. The three steps to reconstruct
the reference circuit (RefCirc) using a biologically informed
RNN (bioRNN) or a simgoidal RNN (σRNN) and evaluate the
reconstruction based on perturbation tests.



A promising approach to constrain models to electrophysi-
ological data lies in the optimization of the simulation param-
eters by gradient descent. These methods were successful in
quantitatively classifying functional cell types (Pozzorini et al.,
2015; Teeter et al., 2018), and modeling micro-circuit interac-
tions (Pillow et al., 2008; Deny et al., 2017; Mahuas, Isacchini,
Marre, Ferrari, & Mora, 2020). To bridge the gap from sin-
gle neurons or small retinal networks to cortical recordings in
vivo, recent studies made substantial progress towards data-
constrained recurrent neural network (RNN) models (Perich
et al., 2020; Bellec, Wang, Modirshanechi, Brea, & Gerstner,
2021; Arthur, Kim, Chen, Preibisch, & Darshan, 2023; Kim,
Finkelstein, Chow, Svoboda, & Darshan, 2023; Dinc, Shai,
Schnitzer, & Tanaka, 2023; Sourmpis, Petersen, Gerstner, &
Bellec, 2023). In this line of work, neurons in the RNN are
mapped one-to-one to recorded cells and optimized by gradi-
ent descent to predict recorded activity at large.

An important question is whether these data-constrained
RNNs can reveal a truthful mechanism of neuronal activity and
behavior. By construction, the RNNs can generate brain-like
network activity, but how can we measure whether the recon-
structed network faithfully represents the biophysical mecha-
nism? To answer this question, we submit a range of RNN re-
construction methods to a difficult perturbation test : we mea-
sure the similarity of the network response to unseen pertur-
bations in the RNN and the recorded biological circuit.

Methods summary
Optogenetics is a powerful tool to induce precise causal
perturbations in vivo (Esmaeili et al., 2021; Guo et al.,
2014). It involves the expression of light-sensitive ion chan-
nels (Aravanis et al., 2007), such as channelrhodopsins,
in specific populations of neurons (e.g., excitatory/pyramidal
or inhibitory/parvalbumin-expressing). In this work, we use
datasets combining dense electrophysiological recordings
with optogenetic perturbations to evaluate RNN reconstruc-
tion methods. Since the neurons in our RNNs are mapped
one-to-one to the recorded cells, we can model optogenetic
perturbations targeting the same cell-types and areas as done
in vivo. Yet, we observe that the similarity between the simu-
lated and recorded perturbations varies greatly depending on
the RNN reconstruction methods.

Results summary
Most prominently, we study two opposite types of RNN spec-
ifications. First, as a control model, we consider a traditional
sigmoidal RNN (σRNN) which is arguably the most common
choice for contemporary data-constrained RNNs (Perich et
al., 2020; Arthur et al., 2023; Pals, Sağtekin, Pei, Gloeckler,
& Macke, 2024); and second, we develop a model with bio-
logically informed inductive biases (bioRNN): (1) neuronal dy-
namics follow a simplified spiking neuron model, and (2) neu-
rons associated with fast-spiking inhibitory cells have short-
distance inhibitory projections (other neurons are excitatory
with both local and long-range interareal connectivity). Fol-
lowing (Neftci, Mostafa, & Zenke, 2019; Bellec, Salaj, Sub-

ramoney, Legenstein, & Maass, 2018; Bellec et al., 2021;
Sourmpis et al., 2023), we adapt gradient descent techniques
to optimize the bioRNN parameters of neurons and synapses
to explain the recorded neural activity and behavior.

Figure 2: Predicting optogenetic perturbations for in vivo
electrophysiology data A. During a delayed whisker detec-
tion task, the mouse reports a whisker stimulation by licking
to obtain a water reward. Jaw movements are recorded by
a camera. Our model simulates the jaw movements and the
neural activity from six areas. B. Example hit trial of a recon-
structed network (left). Using the same random seed, the trial
turns into a miss trial if we inactivate area wS1 (right, light
stimulus indicated by blue shading) during the whisker period
by stimulation of inhibitory neurons (red dots). C. The exper-
imentalists performed optogenetic inactivations of cortical ar-
eas (one area at a time) in three temporal windows. Error of
the change in lick frequency caused by the perturbation, ∆p̂ is
predicted by the model, and ∆pD is recorded in mice. Light-
shaded circles show individual reconstructed networks with
different initializations. The whiskers are the standard error of
means. No TM means ”No Trial-matching loss” (Sourmpis et
al., 2023), the single trial variability is not fitted.

Strikingly, we find that the bioRNN is more robust to per-
turbations than the σRNN. This is nontrivial because it is in
direct contradiction with other metrics often used in the field:



the σRNN simulation achieves higher similarity with unseen
recorded trials before perturbation, but lower than the bioRNN
on perturbed trials. This contradiction is confirmed both on
synthetic and in vivo datasets. To analyze this result, we sub-
mit a spectrum of intermediate bioRNN models to the same
perturbation tests, and identify two bioRNN model features
that are most important to improve robustness to perturbation:
(1) Dale’s law (the cell type constrains the sign of the connec-
tions (Eccles, 1976)), and (2) local-only inhibition (inhibitory
neurons do not project to other cortical areas). Other biologi-
cal inductive biases, like spiking neuron dynamics and a spar-
sity prior, may improve the robustness to perturbations, but we
measure that their effect is smaller in our case. We speculate
that spikes might be more crucial for predicting other types of
timed perturbations, but the recorded opto-genetic perturba-
tions target one cell type broadly in an entire area and for a
sustained duration, so modeling excitatory/inhibitory connec-
tion properties is more crucial for correctly modeling and pre-
dicting the effect of opto-genetic perturbations.

Furthermore (data not shown in this short abstract), a
perturbation-robust bioRNN enables the prediction of the
causal effect of perturbations in the recorded circuit. This
becomes particularly interesting with micro-perturbations (µ-
perturbation) targeting dozens of neurons in a small time win-
dow. We show in silico that the causal effect of µ-perturbations
can be well approximated by the RNN gradients, which has
two important implications for experimental neuroscience: (1)
In a close-loop experimental setup, we can use RNN gradi-
ents to target a µ-perturbation which optimally increases (or
decreases) movement in a simulated mouse (this is demon-
strated in silico); (2) our RNN reconstruction methodology
enables the estimation of gradients of the recorded circuit.
So fitting RNNs becomes a tool to measure “brain gradients”
and potentially relate contemporary in vivo measurement to
decades of theoretical results from machine learning, where
the gradient is a foundational concept (LeCun, Bengio, & Hin-
ton, 2015; Richards & Kording, 2023).
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