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Abstract
Understanding how high-level information integration
arises from large-scale brain activity requires bridging
computational principles with neural dynamics. We pro-
pose a theoretical framework where large-scale brain
dynamics emerge as trajectories around attractors in
course-grained recurrent networks whose dynamics pre-
cisely map to computations. The core network model in
our framework combines principles of self-organization
with attractor network theory and Bayesian inference, of-
fering a recursive, multi-level description, applicable to
large-scale empirical data. A key feature of these net-
works is the emergent orthogonality of the attractors,
which maximizes storage capacity and computational ef-
ficiency. Crucially, this orthogonality allows mapping
complex attractor dynamics onto simpler, interpretable
bipartite architectures, revealing how a wide variety of
computations can be implemented implicitly by network-
wide stochastic attractor dynamics. We propose this
framework as a model for large-scale brain dynamics. Our
approach aligns with previous literature and is supported
by emerging evidence, such as observations of orthogo-
nal brain attractors, akin to canonical resting state net-
works. The framework yields testable predictions and
offers a principled yet simple approach to understand-
ing, explaining, and predicting large-scale brain dynam-
ics and corresponding behavior.
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Introduction
Large-scale brain dynamics are organized around stable, self-
sustaining patterns, known as attractor states (Deco & Rolls,
2003; Khona & Fiete, 2022; Englert et al., 2024). The brain
not only operates as an attractor network; it is also capable of
becoming and remaining one through a self-directed process
of development and learning. While the mathematical appara-
tus of attractor networks is well established (Amit, 1989), un-
derstanding the concrete computations carried out by these
collective self-organized dynamics still poses a key challenge.

Here we propose a formal framework that links the prin-
ciples of adaptive self-organizing dynamics to the concrete
computations implemented by attractors in the brain at arbi-
trary scales.

Our framework is rooted in the free energy principle (FEP)
(Friston, 2010). The FEP is ideally suited to establish this link,
as it formally equates the process of maintaining statistical
separation from the environment (a form of self-organization)
with performing Bayesian inference (a form of computation)
through variational free energy minimization.

Figure 1: Derivation of the formal model. A A deep particular
partition, with interacting subparticles σi (left), which gives rise
to an attractor network (middle). As this network establishes
approximately orthogonal attractors (panel B), the network is
equivalent to an interpretable bipartite architecture (A right).

Here we give a high-level overview of the resulting formal
model and describe some of the main properties, including its
potential to link attractor dynamics to computational primitives
through a mathematical duality between two different network
topologies. We conclude by discussing the framework in light
of existing literature and initial results.

Self-Organizing Attractor Networks from FEP
The derivation of our framework (Spisak & Friston, 2025)
starts from a general formulation of random dynamical sys-
tems and a universal partitioning of them, known as a par-
ticular partition. This separates internal (µ) from external (η)
states via the ”Markov blanket” consisting of sensory (s) and
active (a) states, so that: η ⊥ µ | s,a. Maintaining this par-
tition for extended time periods drives internal states to infer
external causes via free energy minimization: µ̇ ∝ −∇µF .

It can be shown that, if the internal state µ comprises in-
teracting subparticles (where one subparticle’s internal state
σi can be another’s external state, Fig. 1A left), the system’s
dynamics can give rise to arbitrarily complex attractor network
structures. Under plausible parametrizations (e.g., continu-
ous Bernoulli states for subparticles with bias bi represent-
ing evidence), the joint distribution of this system (referred to
as a deep particular partition) takes the functional form of a
continuous-state stochastic Hopfield network (a type of Boltz-
mann Machine): P(σ) ∝ exp(∑i biσi +∑i j Ji jσiσ j) (Fig. 1A
middle), where Ji j is the coupling weights implemented by the
boundary states of the particle.



Figure 2: In the proposed framework, attractor states implement computational primitives, like weighted evidence integration
(Bayesian causal inference, A) or predictive coding (B). Brain attractor states reconstructed from resting state fMRI data (C)
resemble canonical resting state networks and exhibit approximate orthogonality. Adapted from (Englert et al., 2024).

Local Inference Dynamics: Minimizing variational free en-
ergy (VFE) from the point of view of a single node of the at-
tractor network, σi, given observations from all other nodes,
σ\i yields a stochastic variant of the standard Hopfield up-
date rule Eq[σi] = L(bi+∑ j ̸=i Ji jσ j), where L is the Langevin
function and Ji j is the coupling strength, equivalent to local
approximate Bayesian inference (Spisak & Friston, 2025).

Macro-scale Bayesian Inference: Being a special case of
Boltzmann machines, the network implements Markov Chain
Monte Carlo sampling (Neal, 1992) from the global posterior
distribution P(σ|b,J), given the prior represented by attrac-
tors and external input (likelihood) b. This reveals a recur-
sive structure: local Bayesian inference in the subparticles
gives rise to collective macro-scale Bayesian inference at the
network level (which itself is also a VFE-minimizing particle).
This allows multiple valid levels of description - an impor-
tant requirement for modeling large-scale brain dynamics with
coarse-graining and renormalization groups (Binder, 1981).

Learning & Orthogonalization: Minimizing VFE with re-
spect to couplings Ji j yields a learning rule that contrasts
observed vs. predicted correlations: ∆Ji j ∝ σiσ j − L(bi +

∑k ̸=i Jik σk)σ j. It can be shown both mathematically and with
simulations (Fig. 1B, (Spisak & Friston, 2025)) that this learn-
ing rule – akin to Sanger’s rule (Sanger, 1989) – intrinsically
drives attractor states towards orthogonality, which optimizes
memory capacity and computational robustness (Personnaz,
Guyon, & Dreyfus, 1985; Kanter & Sompolinsky, 1987).

Duality: attractors = information integration: Emergent
attractor orthogonality enables a mathematical duality be-
tween our attractor network and two-layer bipartite architec-
tures, akin to Restricted Boltzmann Machines, with an addi-
tional layer of ’integrator’ and inter-layer weights Q (Fig. 1A
right), so that J ≈ QQT (Barra, Bernacchia, Santucci, & Con-
tucci, 2012). This maps attractors directly onto the integra-
tor nodes, translating their dynamics to a language of inter-
pretable computational primitives (Fig. 2A-B), like predictive
coding (Rao & Ballard, 1999) and weighted evidence integra-
tion (Bayesian Causal Inference (Körding et al., 2007)).

A Model for Large-Scale Brain Dynamics

We propose this framework as a model for large-scale brain
dynamics as measured by fMRI, with the nodes σi repre-
senting activity in brain regions and coupling weights J re-
constructed as the negative inverse covariance matrix of the
activation timeseries. Theory suggests that fMRI may pro-
vide sufficient time resolution to capture the slow processes
associated with macro-scale computations (Carr, 2012). In-
deed, there is robust empirical evidence in the literature that
large-scale brain dynamics (”activity flow”) align with the de-
rived inference rule (Cole, 2024). Further, there is initial ev-
idence (Englert et al., 2024) indicating that: (i) functional
connectome-based attractor networks exhibit efficient and rich
attractor dynamics; (ii) brain attractors robustly map onto
canonical resting state networks (Fig. 2C, N=40 rsfMRI); (iii)
attractors extracted from fMRI data exhibit near-orthogonality
(Fig. 2C) and; (iv) attractor dynamics can capture perceptual
states, like pain modulation (Englert et al., 2024).

Discussion and Predictions
Our framework is based on self-organizing, and self-
orthogonalizing, attractor networks that emerge from the FEP,
and links them via a mathematical duality to interpretable com-
putations. Our approach is grounded in plausible assumptions
and borrows its construct validity from first principles of self-
organization. Supported by initial fMRI evidence, the frame-
work presents a principled yet simple theoretical model for
large-scale brain dynamics. Testable predictions include that:
(i) large-scale synaptic plasticity should reflect the derived or-
thogonalizing learning rule; (ii) network perturbations (task,
TMS, pathology) should propagate consistent with model dy-
namics; and (iii) given that attractor dynamics represent an
emergent level of computation (Rosas et al., 2024), cognitive
function relying on high-level information integration should be
predictable from attractor timeseries as much as from full neu-
ral data. Validating these and further predictions will open up
novel opportunities in understanding, explaining and predict-
ing large-scale brain dynamics and corresponding behavior.
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