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Abstract

Despite significant efforts, psychological and cognitive
sciences currently lack standardized frameworks for set-
ting up tasks and models in ways that can be integrated
with data, generalized over tasks, and shared between
researchers. Typically, researchers program an experi-
mental task, assess how a theoretical model would solve
it, and analyze behavioral data, all using custom code.
Due to a lack of standardization, cognitive models are
often experiment-specific, making it difficult to test the
generalizability of models across different tasks and in-
creasing the burden of testing existing models on new
tasks. Here, we present a standardized framework that
addresses these challenges. We build on the Gymnasium
standard from reinforcement learning (RL), which defines
how artificial agents interact with computational envi-
ronments. This standard helps us establish a common
graphical language for different tasks that captures the
connections between states, actions, and rewards. This
representation is further inspired by neuro-nav, which
extends the Gymnasium framework to classical neuro-
science experiments and focuses on neurally plausible
RL. By expressing tasks in a formal language, it is pos-
sible to build libraries of models where agents can per-
form each task. This allows standardized software to per-
form parameter inference and model comparison on real
and synthetic data. What distinguishes our framework
is its focus on running experiments. We provide a high
degree of control over the environments (e.g., stimulus
order) and a direct way to augment the graphical repre-
sentations with stimulus information. This allows for a
direct transition from simulations with artificial agents to
running experiments with human participants using Psy-
choPy. Additionally, we provide logging utilities that save
data in BIDS format, which is standard in neuroimaging.
With this framework, we hope to make psychological and
cognitive science more reproducible and robust.
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Figure 1: Overview of the framework. At its core is the task
specification, which utilises a graph structure. Using this struc-
ture, the user can do classical RL experiments (left) using the
BaseEnv class. By augmenting the graph with stimulus infor-
mation, the PsychopyEnv can collect data from human par-
ticipants and deploy artificial agents to simulate data. For this,
we implemented the convenience function run task, which
stores simulated and real data in BIDS format.

Improved research practices in cognitive and psychological
sciences in response to the reproducibility crisis (Korbmacher
et al., 2023) have also revealed a lack of standardization: Ex-
periments are often customized and use non-free, proprietary
software (Borghi and Gulick, 2021). Although significant ef-
forts have been made to standardise experiments (Sochat
et al., 2016; Sochat, 2018) and provide standards by which
to describe them (Poldrack et al., 2011), these efforts often
stop before the data analysis stage.

Here we present rewardGym1 as an approach to stream-
lining experiments from a computational modelling side. We

1https://github.com/rewardMap/rewardGym
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build on the Gymnasium2 framework, developed by the RL
community, which provides a standardized interface by which
artificial agents can interact with computational environments
(e.g., games, control tasks, etc.) (Brockman et al., 2016; Tow-
ers et al., 2024). While Gymnasium and other frameworks can
render the implemented environments and thus allow for hu-
man interaction (Towers et al., 2024; Juliani et al., 2022), they
might not fulfil the needs of psychology and neuroscience re-
searchers running experiments. We aim to close this gap by
providing tools that augment basic environments, to allow for
data collection via PsychoPy (Peirce et al., 2019) and giving a
high degree of control over the experiment. The collected data
is stored in compliance with the Brain Imaging Data Structure
(BIDS) developed by the neuroimaging community to facilitate
data sharing and collaboration (Gorgolewski et al., 2016).

We present a short description of the software and provide
a Jupyter notebook on Binder with a worked example 3.

Software Description
rewardGym is aimed primarily at cognitive neuroscientists and
psychologists, who study learning and decision-making in hu-
mans with simple experiments.

We build on Gymnasium to set up our environments, relying
on the abstraction of the (partially observable) Markov deci-
sion process (POMDP) that became a standard in RL. As in
Gymnasium, an environment has a reset method that sam-
ples the initial observation and a step method, which takes
an action and returns an observation and the obtained reward
(Towers et al., 2024).

This basic functionality is implemented in the BaseEnv
class (left of Fig. 1). This interface allows for classical RL
analyses such as the benchmarking of algorithms similar to
neuro-nav and Gymnasium (Juliani et al., 2022; Towers et al.,
2024). Abstracting an experiment this way allows us to have
a common language for different tasks. In our case, and in-
spired by neuro-nav, we use a directed graph representation
(see Fig. 2). Each graph consists of nodes and edges. A node
is either a decision point or a terminal state and can be asso-
ciated with a reward function, whereas the edges represent
how an action leads to the next state.

An advantage of graphs is that they can be augmented,
e.g., expanding the BaseEnv by adding stimulus displays and
timings to the nodes. The PsychopyEnv utilizes the addi-
tional information for rendering and response collection with
PsychoPy4 (Peirce et al., 2019).

Finally, the run task function provides a convenience
wrapper to run the whole experiment. It has been adapted
to the idiosyncrasies of the six tasks implemented so far (two-
step, risk-sensitive, human connectome gambling, monetary
incentive delay, gonogo, and posner tasks). The function
saves the collected data (in BIDS format) and can be used

2https://gymnasium.farama.org/
3 https://mybinder.org/v2/gh/rewardMap/exampleWorkflow/binder

?urlpath=%2Fdoc%2Ftree%2FCCNRLDMsims.ipynb
4https://psychopy.org/

with artificial agents to simulate task behavior and replicating
the output files collected from human participants. This allows
researchers to simulate and test the putative behavioral con-
sequences of their computational theories and prepare analy-
ses before data collection.

Graph representation: two-step task
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Figure 2: Implementation of the two-step task (Daw et al.,
2011). Participants in this task need to make a first-stage de-
cision between two images (node 0). This first stage choice
determines which second-stage stimulus pair will be displayed
(node 1 or 2). Each of the four images in the second stage is
associated with a different reward probability (nodes 3 - 6). In
rewardGym we can now augment these nodes with stimulus
information. Node 0, for example, will show an initial fixation
cross and then the first-stage decision. The program will then
wait for a response.

Limitations So far, our framework allows only for tabular RL
and does not support deep RL. This decision was deliberate
to make rewardGym compatible with standalone PsychoPy
and because the cognitive tasks we aim to use have a sim-
ple structure. Other frameworks will be more suitable for more
complex environments (e.g., Juliani et al., 2022).

Since we are developing the framework for a larger neu-
roimaging project, we needed to make several pragmatic deci-
sions that might provide challenges for downstream maintain-
ability – which we aim to address in the future. For example,
we use task-specific conditions in the run task and use an
ad hoc implementation to allow for the high degree of control
researchers need over their tasks.

Discussion
With rewardGym we hope to inspire further steps towards
standardization in psychology and cognitive neuroscience by
building upon standards developed in neuroimaging and RL
communities. These standards should facilitate developments
in the field. Using a common language for different tasks, we
can test if and how the same artificial agents can perform mul-
tiple tasks. This is essential for testing how computational the-
ories of cognition generalize over tasks—presenting a much
more stringent test of theories.

https://gymnasium.farama.org/
https://mybinder.org/v2/gh/rewardMap/exampleWorkflow/binder?urlpath=%2Fdoc%2Ftree%2FCCNRLDMsims.ipynb
https://mybinder.org/v2/gh/rewardMap/exampleWorkflow/binder?urlpath=%2Fdoc%2Ftree%2FCCNRLDMsims.ipynb
https://psychopy.org/


First, our framework makes it possible to recycle the code
behind a single model to simulate and evaluate its perfor-
mance on different tasks. With this model in place, it becomes
more straightforward and efficient to simultaneously test task
assumptions and expected behavior. Second, we can use the
same code again for parameter and model inference. Again,
this substantially reduces the burden and complexity of writing
customized code. These steps are essential due diligence for
assessing whether an experiment is capable of meaningfully
answering the theoretical questions that the experiment aims
to answer. We plan to release another package implement-
ing such reproducible and standardized workflows for model
inference and model diagnostics. Finally, our framework can
be used for simulating realistic log files, a small but important
feature, allowing researchers to carefully plan their analyses
before data collection.

Using rewardGym as a basis, we hope that more re-
searchers from cognitive psychology and neuroscience will
adopt standards from RL for their research, and we hope that
these ideas are adopted for other studies, thus allowing for the
greater adoption of shareable and generalizable models.
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