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Abstract1

Neural network language models excel at capturing the2

complexities of natural language, yet their internal rep-3

resentations remain poorly understood. A key question4

is whether such models form structured, human-like ab-5

stractions that support generalization. We investigate6

how LSTM language models encode grammatical gen-7

der—an ideal test case, as gender is lexically fixed and8

generally not inferable from semantics. We focus on9

long-distance dependencies and various gender agree-10

ment configurations.11

We conduct single-unit ablation to identify neurons12

critical for grammatical gender agreement. Across eight13

LSTM models, we find between one and five units whose14

removal significantly disrupts performance—by over15

40% in some constructions involving gender-interfering16

nouns. These units are essential for both noun-adjective17

and noun-past-participle gender agreement. Neuron ac-18

tivity analyses reveal that these units exhibit category-19

specific effects, with some showing a preference for de-20

fault gender forms, such as masculine nouns.21

Our findings show that LSTMs develop sparse and22

structured representations of grammatical gender, rem-23

iniscent of grandmother cells in neuroscience. These re-24

sults suggest that abstract grammatical categories can25

emerge naturally in LSTM training. More broadly, this26

work contributes to our understanding of how language27

models encode linguistic structure, with implications for28

model interpretability and parallels between artificial and29

biological computation.30

Keywords: neural network language models; linguistic gener-31

alization; mechanistic interpretability; encoding mechanisms32

Introduction33

LANGUAGE, a uniquely human cognitive function, is now re-34

markably imitated by neural network language models. Lan-35

guage models perform well across a range of language com-36

prehension and generation benchmarks, sometimes reaching37

human-level performance. Yet, their errors remain revealing:38

where they fail, we gain insight into the distinctiveness of hu-39

man linguistic competence, offering valuable comparisons for40

cognitive science (Chowdhury & Zamparelli, 2018; Chaves,41

2020; Lan et al., 2024). Moreover, understanding how lan-42

guage models perform linguistic tasks offers cognitive science43

new comparative tools for studying the neural basis of lan-44

guage. In particular, the implicit grammatical representations45

in machine models may provide testable hypotheses about46

how grammar is represented neurally (Houghton et al., 2023).47

This study focuses on LSTMs to investigate the mecha-48

nisms of grammatical processing using the targeted syntactic49

evaluation approach Linzen et al. (2016). LSTMs demonstrate50

strong grammatical competence and greater biological plausi-51

bility than more powerful transformer models, positioning them52

as effective minimal models for studying neural grammar rep-53

resentation (Linzen et al., 2016). We investigate the inter-54

nal mechanisms that enable LSTMs to encode and represent55

grammatical gender to maintain agreement in complex con-56

texts. We use single-neuron ablation: systematically removing57

or ‘ablating’ neurons from a neural network to understand their58

function. In addition, we ask whether LSTM language models59

encode the grammatical gender as an abstract category, thus60

enabling linguistic generalization.61

This paper confirms the emergence of specialized single62

neurons and sparse networks in LSTMs for encoding gram-63

matical gender, using a test set we developed in French. We64

investigate two gender agreement contexts: noun-adjective65

and noun-past-participle. We evaluate the role of gender-66

specific units in these contexts. For each, we test both ad-67

jacent and long-distance agreement in the presence of attrac-68

tors. Expanding on (Lakretz et al., 2019), which focused on69

constructions with minimal intervening words, we evaluate in-70

dividual neurons’ roles across varying dependency lengths.71

We assess whether LSTMs generalize grammatical gender72

across four head noun categories: singular/plural and femi-73

nine/masculine. Our findings provide evidence of sparse and74

selective representations in LSTMs, highlighting parallels with75

biological systems such as the grandmother cell phenomenon76

in neuroscience (Gross, 2002; Quiroga et al., 2005).77

Methods78

We trained a two-layer LSTM with 650 hidden units on French79

Wikipedia data (Mueller et al., 2020) for next-word prediction.80

We trained both tied and untied versions of the model, with81

the tied variant sharing input, output, and embedding weights82

(Press & Wolf, 2017) to facilitate interpretability. For robust-83

ness, we trained five untied and three tied models with differ-84

ent random initialization seeds.85

The LSTM models were tested on grammatical agreement,86

which involves coordinating the noun with other elements such87

as the verb, determiner or adjective based on the noun’s88

properties such as nominal number (singular/plural) and gen-89

der (masculine/feminine/neutral). Traditional psycholinguis-90



tics studies have used agreement tasks to probe hierarchical91

syntactic knowledge that humans employ to parse language92

(Bock & Miller, 1991; Franck et al., 2002).93

We evaluate LSTM performance before and after single-94

neuron ablation for two common contexts of gender agree-95

ment in French: noun-adjective (NA) and noun-participle (NP)96

agreement, see Table 2. The simplest case is (A) adjacent97

agreement, where no intervening words separate the noun98

and its agreement target, making agreement straightforward.99

For instance, in the NA construction in Table 2, las.f robes.f est100

bleues.f. To systematically test agreement, we varied the gen-101

der and number of the subject noun. Secondly, we also test102

(B) long-distance agreement by including 1-11 words between103

the noun and its agreement target using prepositional phrases104

and subject-relative clauses. These constructions are labelled105

NA-n and NP-n, where n is the number of intervening words as106

an example for NA-5: la robes.f [que j’ aime beaucoup]rel est107

bleues.f/bleum.f. Next, we test the more complex (C) agree-108

ment across an attractor by introducing another noun, with109

varying number and gender, using a prepositional phrase that110

could potentially interfere with gender agreement. We test this111

using conditions NNnum.genA and NNnum.genP, see Table 2.112

Table 1: Gender/syntax units in different models with a ran-
dom seed, labeled as Mseed. This result section focuses
on M528. Each unit reduces gender agreement performance
when: SG: the head noun is singular, PG: the head noun is
plural, G: the head noun is either singular or plural, S: there is
an interfering attractor or in longer dependencies.

Gender/syntax units
Untied Model SG PG G S
M528 - 870 1098 958
M1571 914 1013 - -
M704 863 1012 - -
M220 - - 937 -
M73 - - 1269 -
Tied Model
M tied528 - - 1174 -
M tied704 - 1262 930
M tied73 764 768 - -

Results & Discussion113

Across eight LSTM initialisations, ablating just 2–3 out of 1300114

units resulted in significant drops in grammatical agreement115

performance. We focus on model M528, with similar patterns116

observed across other runs (Table 1). Three units consis-117

tently emerged as critical: Unit 870 (PG-870), which selec-118

tively encoded plural gender agreement; Unit 1098 (G-1098),119

encoding gender more broadly; and Unit 958 (S-958), which120

tracked syntactic structure. Performance on long-distance de-121

pendencies—especially those with intervening tokens or at-122

tractors—dropped to near chance after ablation.123

The single-unit gate and cell state activity analyses con-124

firmed that these units encoded abstract grammatical fea-125

tures. Gender units activated at the head noun and main-126

tained gender information through to the agreement target,127

often via sustained cell state values. Syntax units preserved128

structural information across the clause, suggesting internal129

representations of sentence depth. t-SNE projections of unit130

activations revealed clear separability by gender and num-131

ber, further supporting the presence of abstract, category-132

sensitive encodings (Figures 7 and 8).133

Interestingly, the effect of ablation was asymmetric: agree-134

ment with feminine nouns was far more disrupted than mas-135

culine, aligning with the default reasoning strategy proposed136

by (Jumelet et al., 2019), whereby default grammatical fea-137

tures—such as singular number or masculine gender—are138

encoded implicitly in model weights, while non-default features139

like plural or feminine depend more on explicit, input-driven140

encoding. Our results support this distinction: ablations of141

gender-selective units impaired feminine agreement but left142

masculine largely intact, indicating that masculine may be re-143

dundantly or diffusely encoded.144

These findings mirror a broader distinction in neural coding145

between localist and distributed representations. The emer-146

gence of highly selective units in our LSTM aligns with the147

grandmother cell hypothesis in neuroscience—the idea that148

individual neurons (or units) can become tuned to specific,149

abstract categories. Notable examples include the “Jennifer150

Aniston neuron” in the human hippocampus, which responds151

exclusively to images of that individual (Quiroga et al., 2005).152

Similarly, Konorski (1967) proposed gnostic units for recog-153

nizing object categories. Our gender and syntax units exhibit154

similar behavior in a computational setting, selectively activat-155

ing for abstract grammatical roles and sustaining them across156

syntactic contexts.157

However, localist units do not exclude distributed coding.158

Sparse, localist encodings (as in our identified units) can coex-159

ist with more distributed representations—particularly for de-160

fault categories. This balance reflects ongoing debates in neu-161

roscience: while localist encoding offers interpretability, dis-162

tributed representations are thought to be more robust and bi-163

ologically plausible (Bowers, 2017; Rolls, 2017). Importantly,164

distributed representations can also be sparse—involving only165

a few active units, each of which may not encode easily inter-166

pretable features.167

Thus, LSTMs, while simplistic compared to the brain, offer168

a computational testbed for examining these dual encoding169

strategies. These findings open several avenues for future170

work. Do the identified units also encode related features like171

animacy, case, or number? Are they robust across languages172

with richer agreement systems (e.g., German, Bantu)? Can173

similar sparse mechanisms be observed in transformer mod-174

els, or are they unique to sequential architectures like LSTMs?175

Most importantly, ablation studies like ours help demarcate176

the boundary between what linguistic phenomena can be ex-177

plained by statistical learning in neural networks, and what178

might be uniquely human. As noted by Surendra et al. (2023),179

this boundary is often subtle.180
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Table 2: Example phrases for adjacent noun-adjective and noun-past-participle gender agreement. We tested both singular and
plural noun phrases for each condition. s.f: singular feminine, s.m: singular masculine, p.f: plural feminine, p.m: plural masculine.

Singular Plural
Noun-adjective
NA la robe est bleue/bleu les robes sont bleues/bleus
(No attractor) the dresss.f is blues.f/blues.m the dressesp.f are bluep.f/bluep.m

NNgenA la robe avec le sac est bleue/bleu les robes avec les sacs sont bleues/bleus
(Gender attractor) the dresss.f with the bags.m is blues.f/blues.m the dressesp.f with the bagsp.m are bluep.f/bluep.m

NNnum.genA la robe avec les sacs est bleue/bleu les robes avec le sac sont bleues/bleus
(Number/gender attractor) the dresss.f with the bagsp.m is blues.f/blues.m the dressesp.f with the bags.m are bluep.f/bluep.m

Noun-participle
NP la robe est tombée/tombé les robes sont tombées/tombés
(No attractor) the dresss.f fells.f/fells.m the dressesp.f fellp.f/fellp.m

NNgenP la robe avec le sac est tombée/tombé les robes avec les sacs sont tombées/tombés
(Gender attractor) the dresss.f with the bags.m fells.f/fells.m the dressesp.f with the bagsp.m fellp.f/fellp.m

NNnum.genP la robe avec les sacs est tombée/tombé les robes avec le sac sont tombées/tombés
(Number/gender attractor) the dresss.f with the bagsp.m fells.f/fells.m the dressesp.f with the bags.m fellp.f/fellp.m
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Figure 1: Performance on simple agreement with 0, 1, 5 and 10 intervening tokens for noun-adjective (NA) and noun-participle
(NP) conditions after ablation of each LSTM unit (x-axis). Each panel shows mean agreement accuracy (y-axis) after ablating
individual units (x-axis) for singular/plural and masculine/feminine nouns. Performance is split by head noun category: singular
(top), plural (bottom), masculine (left) or feminine (right). Performance is further broken down by constructions with zero (green),
one (red),five (yellow), and ten (blue) intervening tokens. Each dot represents performance after ablating a unit, with significant
drops (z-score <−3) highlighted.



Number and gender of main noun

Figure 2: Input gate, forget gate, cell state and hidden state activity for gender units for simple agreement, that is, no attractor.

Number and gender of main noun

Figure 3: Input gate, forget gate, cell and hidden state activity for agreement across a gender attractor (NNgenA/ NNgenP)
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Figure 4: Performance after ablation of each LSTM unit (x-axis) on noun-adjective agreement with attractor nouns of varying
gender. Each panel corresponds to test sentences with different combinations of subject and attractor noun categories. For
example, the SM SF indicates Singular-Masculine subject noun and Singular-Feminine attractor.
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Figure 5: Performance after ablation of each LSTM unit (x-axis) on noun-adjective agreement with attractor nouns of varying
gender and number.



Number and gender of main noun

NNgenA

NA
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Figure 6: Input gate, forget gate, cell and hidden state activity for syntax unit S-958 across conditions

Figure 7: t-SNE projections of LSTM cell activations for selected gender units across gender agreement conditions (FS = feminine
singular, FP = feminine plural, MS = masculine singular, MP = masculine plural). Activations across six syntactic configurations
(simple agreement, agreement across gender and number attractors), both for noun-adjective and noun-participle across short
and longer-range dependencies, were aggregated and flattened across time steps to capture the full temporal profile. Gender
Unit-1098 (left) and Gender Unit-870 (right) show clear clustering by grammatical gender, suggesting category-specific encoding
across sentence constructions. In contrast, syntax unit in Figure 8 shows less separability.



Figure 8: t-SNE projections of LSTM cell activations for the syntax-related Unit-958 (left) and a randomly selected unit Unit-624
(right). Compared to the gender units (Figure 7), these units show less separable patterns across gender-number categories,
highlighting the contrast between specialized and non-specialized representations.
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