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Abstract
Recent work has shown that the performance of spiking
neural networks (SNNs) on temporally complex tasks im-
proves significantly when axonal delays are treated as
learnable parameters. This raises an important ques-
tion: If temporal delays improve a network’s computa-
tional capacity, how precise do synaptic weights need to
be? In this work, we investigate the relationship between
delay-based computation and weight precision by com-
bining quantized synaptic weights with a range of learn-
able delays on a challenging neuromorphic audio task.
Our results reveal that short delays contribute little to
performance, whereas medium to long delays are criti-
cal. Building on this insight, we introduce a learnable
thresholding mechanism to suppress short delays that
can be effectively compensated for by weights. These
findings suggest that delays can reduce the burden on
weight precision, highlighting a promising direction for
energy-efficient SNN design and offering new perspec-
tives on the role of delay in biological and neuromorphic
computation.
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Introduction
Spiking neural networks (SNNs) have garnered increasing at-
tention due to their inherent sparsity, energy efficiency, and bi-
ological plausibility. Recent work has shown that incorporating
trainable axonal delays can significantly boost performance on
tasks with rich temporal structure (Sun, Zhu, & Botteldooren,
2022; Hammouamri, Khalfaoui-Hassani, & Masquelier, n.d.;
D’agostino et al., 2024). In biological systems, such de-
lays—reflecting neural heterogeneity—are known to expand
memory capacity and improve robustness in dynamic environ-
ments (Perez-Nieves, Leung, Dragotti, & Goodman, 2021).

While delay learning holds promise as both a primary and
auxiliary computational mechanism, its exact role in shaping
network performance remains underexplored. In particular, it
is unclear whether short or long delays are more critical for
solving complex tasks.

In this paper, we present the first study to combine quan-
tized synaptic weights with trainable delays, leveraging this
integration to tackle the challenging Spiking Heidelberg Dig-
its (SHD) auditory benchmark (Cramer, Stradmann, Schem-
mel, & Zenke, 2020). We first replicate the finding that intro-
ducing trainable delays substantially improves performance,
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achieving highly competitive results to the state-of-the-art. To
better understand the computational role of delay, we sys-
tematically ablate delays from the final layer of the network.
Our findings reveal that short delays provide little contribution,
while medium to long delays are essential to maintain high
accuracy. Based on these insights, we propose a learnable
thresholding mechanism that selectively prunes short delays,
enabling their effects to be absorbed by the synaptic weights.

Methods
In this study, we use a feedforward spiking neural network
(SNN) with trainable axonal delays, following the approach in-
troduced in (Sun et al., 2022), and optimize it end-to-end using
the Slayer framework (Shrestha & Orchard, 2018) with finite
gradient approximations. The network architecture consists of
two fully connected layers with 128 neurons each, and is eval-
uated on the Spiking Heidelberg Digits (SHD) classification
task. The SHD dataset converts spoken digits in English and
German into spike trains using a biologically inspired cochlear
model, resulting in input across 700 frequency channels. The
task involves classifying 20 words based on this spatiotempo-
ral input.

We employ the spikemax loss function (Shrestha, Zhu, &
Sun, 2022), and final predictions are made by selecting the
output neuron with the highest cumulative spike count. The
spiking units are modeled using the Spike Response Model
(SRM), and spike generation is approximated using surrogate
gradient descent. Importantly, no upper bound is imposed on
delay values during training, allowing the network to freely ex-
plore temporal strategies.

To investigate the interaction between delays and weight
precision, we quantize synaptic weights into ternary states (Li,
Liu, Wang, Zhang, & Yan, 2016) – explained below – and train
them using the straight-through estimator. We further intro-
duce a learnable thresholding mechanism to filter out short
delays. For each layer, an independent parameter θd defines
the minimum effective delay, such that any delay d below this
threshold is suppressed: d ← d ·H(d− θd), where H is the
Heaviside function. This mechanism enables the network to
dynamically ignore delays that can be compensated for by the
neural weight.

Results
We first aimed to investigate to what extent quantization of
the weights impacted task performance in the SHD task. In
what follows, ”full-precision weights” refers to weights rep-
resented using 32 bits, while ”quantized weights” refers to
1.58 = log2 3 bits, where the weights are represented only



Figure 1: Network accuracy, ranging from baseline performance to chance level, is shown as we ablate k units ranked by
increasing delay values (panel left), as well as under the reverse order condition (panel right). The results are presented for two
resetting schemes: in the ”weight” scheme, the connection weights associated with a specified delay (x-axis value) are set to
zero, whereas in the ”delay” scheme, the neuron’s delay is reset to zero. The removal of long delays (right) has a much larger
impact on performance than the removal of short delays (left) in both schemes.

Table 1: Comparison of model performance on the SHD
dataset.

Model Accuracy
Full Precision SNN 48.60%
Quantized SNN 44.41%
Quantized SNN+delays 89.92%
Quantized SNN+delays (threshold) 90.68%

as a single negative value, positive value, or zero (otherwise
known as ternary).

In the absence of delay learning, full-precision feedfor-
ward SNN and its quantized counterpart achieve relatively
low accuracies of 48.60% and 44.41%, respectively. For net-
works operating on temporally complex data, simply increas-
ing the number of neurons for quantization SNNs does not
yield substantial performance gains; when the neuron count
is increased to 256 and 512, the accuracies obtained are
only 45.89% and 45.23%, respectively. However, we find the
striking result that, in the presence of trainable axonal de-
lays, it is possible to achieve a significantly higher accuracy
of 89.92% even with weights quantized down to ternary (see
Table 1). To the best of our knowledge, only one other study
has investigated quantization in delay-based networks, with
fixed/ternary weights and on a small-scale image classifica-
tion task (Grappolini & Subramoney, 2023).

This result suggests that delays can substantially enhance
the computational capacity of spiking networks. However, it
remains unclear precisely where in the delay distribution this
improvement originates. To investigate this, we fixed the most
high-performing of our spiking networks and systematically
ablated subsets of delays using two methods: (1) zeroing the
connection weights associated with specific delays, and (2)
zeroing the delays of the neurons corresponding to those de-
lays. As shown in Figure 1, removing short delays had minimal
impact on performance, with competitive accuracy maintained
across both ablation strategies. In contrast, removing long de-
lays led to a sharp degradation in accuracy. Intuitively, when
all delays were set to zero, the model collapsed to a standard
feedforward SNN with significantly reduced performance.

These results demonstrate that even with quantized
weights, delay-based SNNs were capable of solving tempo-

Figure 2: Following training, we observe a positively-skewed
delay distribution under learnable minimum threshold con-
straints.

rally demanding tasks. Motivated by the limited utility of short
delays, we introduced a learnable delay threshold to filter them
out during training. This dynamic filtering allowed the model
to retain temporal expressivity while reducing reliance on fine-
grained delay tuning, which can be regarded as a regularizer.
The loss in temporal precision was effectively compensated
by synaptic weight adjustments, leading to a slight improve-
ment in overall performance. The resulting delay distribution
is visualized in Figure 2.

Conclusions
Delays are a deeply embedded property of the brain’s orga-
nization (Sreenivasan & D’Esposito, 2019). Here, we show
that incorporating trainable axonal delays into a feedforward
SNNs can significantly enhances performance on the chal-
lenging SHD classification task, achieving nearly 90% accu-
racy—compared to below 50% for baseline models without
delay learning, despite their weights being significantly quan-
tized. Ablation studies revealed that short delays contribute
minimally, whereas medium and long delays are essential for
high performance. Additionally, introducing a learnable delay
threshold to suppress ineffective short delays led to a mod-
est performance gain. In future work, we plan to explore ad-
ditional constraints, such as sparsity and space (Achterberg,
Akarca, Strouse, Duncan, & Astle, 2023), to further refine the
delay distribution — potentially yielding models that are both
more biologically plausible and hardware-efficient.
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L., Castellani, N., . . . Payvand, M. (2024). Denram: neuro-
morphic dendritic architecture with rram for efficient tempo-
ral processing with delays. Nature communications, 15(1),
3446.

Grappolini, E., & Subramoney, A. (2023). Beyond weights:
deep learning in spiking neural networks with pure synaptic-
delay training. In Proceedings of the 2023 international con-
ference on neuromorphic systems (pp. 1–4).

Hammouamri, I., Khalfaoui-Hassani, I., & Masquelier, T. (n.d.).
Learning delays in spiking neural networks using dilated
convolutions with learnable spacings. In The twelfth inter-
national conference on learning representations.

Li, F., Liu, B., Wang, X., Zhang, B., & Yan, J. (2016). Ternary
weight networks. arXiv preprint arXiv:1605.04711.

Perez-Nieves, N., Leung, V. C., Dragotti, P. L., & Goodman,
D. F. (2021). Neural heterogeneity promotes robust learn-
ing. Nature communications, 12(1), 5791.

Shrestha, S. B., & Orchard, G. (2018). Slayer: Spike layer
error reassignment in time. Advances in neural information
processing systems, 31.

Shrestha, S. B., Zhu, L., & Sun, P. (2022). Spikemax: spike-
based loss methods for classification. In 2022 international
joint conference on neural networks (ijcnn) (pp. 1–7).

Sreenivasan, K. K., & D’Esposito, M. (2019). The what, where
and how of delay activity. Nature reviews neuroscience,
20(8), 466–481.

Sun, P., Zhu, L., & Botteldooren, D. (2022). Axonal delay as
a short-term memory for feed forward deep spiking neural
networks. In Icassp 2022-2022 ieee international confer-
ence on acoustics, speech and signal processing (icassp)
(pp. 8932–8936).


