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Abstract 
Temporal regularities in sensory inputs can 
sharpen our perception of the input. How the brain 
develops sensitivity for temporally structured 
stimuli through statistical learning (SL) remains 
unknown. In this study, we investigate brain 
activities in the early visual, medial temporal and 
striatal regions during repeated exposure to a 
temporal structure embedded in sequential visual 
stimuli. In the late stage of learning, we observed 
increased sensitivity to stimulus category in V1, 
and such sensitivity was mirrored by activity in the 
entorhinal cortex. The entorhinal activity also 
became correlated with that of the nucleus 
accumbens towards the end of the task. These 
results reveal complementary roles of the above 
regions in the hierarchical processing for learning 
temporal regularity. 
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Introduction 
Statistical learning (SL) enhances our sensitivity to 
repeated patterns in a sensory stream without the 
need for explicit feedback, even just after short 
exposure (Fiser & Aslin, 2001; Sherman & 
Turk-Browne, 2020; Thiessen, Girard, & Erickson, 
2016). The enhanced sensitivity facilitates the 
perception and memory of the input (Batterink, 2017; 
Isbilen et al., 2022). The neural mechanisms to 
account for SL are believed to recruit both sensory- 
and cognitive-level processing (Reber, 2013; Karuza et 
al., 2013; Frost et al., 2015), and yet, when and where 
the neural plasticity takes place during SL remains 
elusive.  

In this study we investigate how multi-region brain 
activity unfolds during the learning of an embedded 
temporal pattern in sequential visual inputs, using 
functional magnetic resonance imaging (fMRI). We 
focused on 6 pre-select regions of interest (ROIs) 
based on their reported involvement in SL tasks from 
previous studies (Karuza et al., 2013; McNealy et al., 
2006; Schapiro et al., 2012; Richter & de Lange, 
2019): the primary visual cortex (V1), hippocampal 

formation (HF), entorhinal cortex (EC), caudate 
(Caud), putamen (Put) and nucleus accumbens 
(NAcc). We aim to understand the multi-level sensory 
and cognitive processing that leads to facilitated 
perception by learning the temporal regularity. To 
overcome the challenge of rapid hemodynamic 
changes in a fast-paced task, we applied a hidden 
Markov model (HMM) framework (Baldassano et al., 
2017; Bishop, 2006) to dynamically estimate 
blood-oxygenation-level-dependent (BOLD) responses 
at each time frame. The observed dynamics reveal 
complementary roles of V1, EC and NAcc in sensory 
sharpening through SL. 

Methods 

Participants. Twenty-two adults (age= mean 20.79 ± 
s.d. 2.89 years, 7 males) participated in this study. All 
participants gave written consent. 

 

Figure 1: Schematic of the task design. 

Stimuli and procedure. Participants viewed 
sequentially presented images while responding to 
target images embedded in each sequence (Fig. 1). 
The stimuli in each sequence were (1) Letters or 
Pictures and (2) temporally arranged into triplets 
(”S-block”) or randomly (”R-block”). The target location 
followed no systematic pattern and the participants 
were not informed of the embedded structure. 
MRI data acquisition & preprocessing. MRI 
data were acquired on a Siemens 3T Magnetom 
Prisma scanner with a 64-channel head coil. 
Functional images used multi-slice T2*-weighted 
echo-planar scans (TR=800 ms, TE=32 ms, matrix=64 
× 64, FOV=21 cm, 61º flip angle, acceleration factor=6, 
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voxel size 2.5 mm isotropic). Preprocessing used the 
standard fMRIprep pipeline. ROI definition followed 
FreeSurfer’s “aparc” atlas. 
HMM design and fitting. We hypothesize that at 
each time point, the BOLD activity from the 6 ROIs 
follow a multivariate Gaussian distribution. An 
emission probability function (Bishop, 2006) links the 
BOLD activity to a finite set of brain states by 
specifying the mean μi and covariance matrix Σi for 
each state i. Model fitting used the Python toolbox 
Dynamax (MIT License 2022). One HMM was fit to the 
same type (S or R) of sequences in each run, treating 
subjects as independent samples. By leave-one-out 
cross-validation, the number of states was fixed to 6. 

Results 

Figure 2: RT shown as median ± s.e. across subjects, 
superimposed with individual data in black dots. *: p < 
0.05, ***: p < 0.001. 

Behavior. Comparisons of RT between S- and 
R-blocks showed a facilitation effect on target 
detection. For both types of stimuli, across subjects, 
RT was significantly lower in S-blocks than in R-blocks 
(Fig. 2; Letter stimuli: Wilcoxon signed-rank W = 23.0, 
p < 0.00028; Picture stimuli: W =71.0, p < 0.024). 
BOLD responses in V1 mirrored by EC. We 
divided the trials into “fast” and “slow” by the median 
RT, separately for S- and R-blocks. Then, for each RT 
group and each ROI, we computed the Letter-Picture 
difference of the HMM-estimated BOLD activity in the 
second run of each learning session (Fig. 3). For V1, 
this difference was positive in S-blocks and negative in 
R-blocks. This pattern was mirrored by the EC but not 
any other ROI. Comparing the difference score 
between S- and R-blocks, both V1 and EC showed a 
more significant contrast in fast than slow trials (V1 

fast: t163.8 = 3.68, p < 0.00032, slow: t159.6 = 2.04, p < 
0.042; EC fast: t157.1 = 3.29, p < 0.0012, slow: t145.4 = 
2.71, p < 0.0074). NAcc also showed a significant S-R 
contrast in fast trials (t130.1 = 2.33, p < 0.022) but not in 
slow trials (t145.3 = 0.03, p < 0.98). 

Figure 3: Letter-Picture sensitivity in fast and slow 
trials. Scales of the y-axis were adjusted separately for 
V1, medial temporal (EC & HF) and striatal (Caud, Put 
& NAcc) regions to accommodate regional baseline 
differences for  visualization. *: p < 0.05, **: p < 0.01, 
***: p < 0.001. 

Correlated activity of EC & NAcc. We observed 
an increase of the HMM-estimated covariance 
between the EC and NAcc at Run 4, for the S-blocks 
but not the R-blocks (veridical covariance > 100 out of 
100 HMM estimate from permuted sequences). 

Discussion 

The greater Letter-Picture difference of V1 activity in 
S- than R-blocks suggests sharpened representation 
of stimulus category for structured sequences. This 
sharpening effect was greater in fast than slow trials, 
suggesting its link to the facilitation of target detection. 
Importantly, the V1 pattern was mirrored by EC, while 
the latter activity became correlated with NAcc through 
learning. This suggests that higher-level processing 
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may contribute to the sharpening effect, reflecting a 
hierarchy in the processes related to SL. 
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