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Abstract 
Representational similarity analysis (RSA) 
characterizes the geometry of neural activity 
patterns elicited by different stimuli while 
discarding their regional-mean activity and the 
location or orientation of the patterns in 
multivariate response space. Regional-mean 
activation analysis serves the complementary 
purpose of comparing the average population 
response to different stimuli. Here we introduce a 
novel method, framed RSA, which honors both 
the geometry and the regional-mean preferences 
in evaluating model-predicted representations. 
To achieve this, we augment the stimulus 
patterns with two reference patterns: the zero-
point (origin) and a uniform constant pattern, 
enabling RSA to incorporate information about 
the global location, orientation, and mean 
activation of neural population codes. Framed 
RSA improves accuracy for both brain region 
identification (using fMRI data from the Natural 
Scenes Dataset) and deep neural network layer 
identification relative to existing RSA 
approaches. Framed RSA thus combines the 
strengths of two complementary and traditionally 
separate analysis approaches, and improves 
power for model-comparative inference. 
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Introduction 
RSA (Kriegeskorte et al., 2008) compares two systems 
based on their pairwise dissimilarities among a set of 
stimuli, discarding mean stimulus activations. While this 
abstraction is useful, mean activation informs the 
functional role of a brain region and the ease of 
downstream readout (Prince et al., 2024), and in DNNs  

 
the thresholds imposed by nonlinear activation functions 
entail that responses with the same geometry but differing 
mean activations can vary in their downstream effects. 
 To combine these traditionally separate 
approaches, we introduce a new RSA variant, Framed 
RSA, allowing systems to be compared based both on 
their geometry and their mean activation profiles within a 
single framework. In Framed RSA, in addition to the 
stimulus patterns we add two further patterns in 
multivariate response space, consisting of the zero-point 
(origin) and a uniform constant pattern (Figure 1). These 
reference patterns give a “frame” for measuring the 
position and orientation of the patterns in multivariate 
response space, making the resulting RDM sensitive to 
these facets of the geometry, and importantly the 
regional-mean activations of the stimuli. We show that 
Framed RSA improves accuracy on brain region and DNN 
layer identification relative to existing RSA approaches, 
demonstrating its value for model-comparative inference. 

      
Figure 1: Framed RSA includes distances to two 
“framing” patterns, adding location, orientation, and 
mean activation information to the RDM. 

Methodology 
In Framed RSA, in addition to measuring the pairwise 
dissimilarity among the patterns elicited by different 
stimuli, we also measure the dissimilarity between each 
stimulus pattern and two “framing” patterns: the all-zeros 
(origin) pattern z, and a uniform constant pattern c (e.g., 
[1 1 1 … 1 1 1]). Adding these distances to the resulting 
RDM gives it sensitivity to the mean activations elicited by 



each stimulus. If x is an arbitrary stimulus pattern, its 
squared Euclidean distance (with similar logic applying to 
other distance metrics) to z and c are: 

dxz = ||x – z||2 = ||x||2 + ||z||2 – 2x⋅z = ||x||2 

dxc = ||x – c||2 = ||x||2 + ||c||2 – 2x⋅c 
 
Since x⋅c is simply the sum of the entries of x times a fixed 
constant, the entries of an RDM that includes z and c can 
thus be linearly recombined to recover the relative mean 
activations of the stimulus patterns. Furthermore, the 
resulting RDM becomes sensitive to translations of the 
stimulus patterns, as well as to any rotations that change 
the distances between the stimulus patterns and the 
framing patterns z and c, enabling the use of RSA in 
cases when these parameters are of interest. 

To validate Framed RSA and test whether it 
yields improved model-comparative power in a scenario 
with a known ground-truth, we tested its performance in 
brain region identification, and in DNN layer identification. 
Broadly, this approach tests how often a metric classifies 
different instances of the “same” processing stage as 
more similar than instances of different stages (e.g., 
whether responses from area V1 from different subjects 
are more similar to each other than responses to V2). 

For brain region identification, we used open-
source data from the Natural Scenes Dataset (Allen et al., 
2022), using data from 14 visually responsive ROIs and 
eight different subjects. For each method being 
compared, we computed the RDMs for the ROIs of seven 
of the eight subjects and those of a left-out test subject, 
computed the pairwise similarity between each of the test 
subject’s RDMs and the mean RDMs of the training 
subjects, and tallied the rate at which each test RDM was 
more similar to the same-region training RDM than to any 
of the other training RDMs. We compared four conditions: 
1) standard RSA using just the stimulus patterns, 2) 
framed RSA including the stimulus patterns and the all-
zeros pattern z, 3) framed RSA including the stimulus 
patterns, the all-zeros pattern z, and the constant pattern 
c, and 4) taking the Pearson correlation between the 
mean stimulus responses of each region, allowing us to 
test how well mean activation alone can discriminate 
regions. For #1-3, crossnobis distance was used as the 
dissimilarity metric, and whitened correlation was used as 
the RDM comparator. For #3, c was tuned to have the 
same norm as the mean norm of the stimulus patterns. 
This pipeline was run on repeated samples with varying 
numbers of stimuli. Finally, to examine whether Framed 
RSA makes particular pairs of ROIs less confusable, we 

visualized the difference between the confusion matrices 
for standard RSA (#1) and Framed RSA (#3). 

DNN layer identification followed the same logic, 
instead using 10 AlexNet (Krizhevsky et al., 2012) 
instances trained on object recognition from different 
random seeds, and using layer (e.g., conv1) instead of 
brain region. To increase the difficulty of the task, isotropic 
noise was added to the channels at either a low level 
(noise variance equal to the signal variance in the layer) 
or a high level (noise variance 15x the signal variance). 

Results 
Framed RSA improves brain region identification relative 
to standard RSA (Fig 2A), with the addition of the all-zeros 
(z) pattern and uniform constant (c) pattern each 
providing a further boost. The profile of mean activations 
is less accurate than Framed RSA with few stimuli, but 
more accurate with many stimuli. Framed RSA especially 
improves discrimination among ROIs defined by their 
mean activation preferences (e.g., to faces or to 
locations), validating its sensitivity to this information (Fig 
2B). For DNN layer identification (Fig 2C), framed RSA 
outperforms both typical RSA and the profile of mean 
activations at both low and high levels of noise. 
 In sum, Framed RSA offers a conceptually simple 
way to combine RSA and mean activation analysis, 
improving the power of model-comparative inference.  

 
Figure 2: Brain region identification accuracy (A), 
heatmap of confusion matrix differences between framed 



and standard RSA (B), and DNN layer identification 
accuracy (C). 
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