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Abstract 
The superior colliculus is an evolutionarily old 
midbrain structure involved in vision, attention, and 
motor control, enabling it to rapidly coordinate 
defensive responses to approaching threats. It 
remains unclear whether the human superior 
colliculus functions as a rudimentary threat 
detector, or if it uses highly processed information 
from cortex to facilitate threat processing. Here, we 
used convolutional neural networks and fMRI to 
characterize superior colliculus responses to 
naturalistic videos. We found that the human 
superior colliculus encoded visual looming and 
static object features, both of which were related to 
subjective fear ratings. Connectivity analyses 
revealed that looming and object-related signals in 
the superior colliculus covaried with a common 
network of regions including frontoparietal cortex, 
pulvinar, amygdala, and early visual, superior, and 
inferotemporal cortex. Object-related signals in the 
superior colliculus covaried more strongly with 
activity in the fusiform gyrus than looming-related 
signals, suggesting that static information about 
objects may reach the colliculus through cortical 
inputs. Together, these results characterize how 
the superior colliculus flexibly detects threats 
through its participation in distributed neural 
networks. 
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Introduction 
The superior colliculus is a midbrain structure involved 
in multiple functions—from object detection, visual 
attention, spatial reorienting, to coordinating defensive 
behavior (X. Liu et al., 2022). The mammalian superior 
colliculus is involved in the detection of looming objects 
(Cléry et al., 2020; Lee et al., 2020; Y.-J. Liu et al., 
2011) and is necessary for active avoidance (Evans et 
al., 2018). Through its connectivity with diverse cortical 
systems, processing within the rodent superior 
colliculus is responsible for flexibly coordinating 
defensive behaviors, whether freezing or actively 
avoiding imminent threats (Li et al., 2023). At present, it 
is unclear whether similar computational principles 
apply to the human superior colliculus, or if superior 

colliculus activity is related to subjective emotional 
experience. Given evidence of object-selective 
responses in the primate superior colliculus (Yu et al., 
2024) and dense projections to the superior colliculus 
from the ventral visual stream (Cerkevich et al., 2014; 
Fries, 1984), the human superior colliculus could use 
information about object category or looming motion to 
coordinate responses to threats. Here we evaluate 
these possibilities using task fMRI, naturalistic 
stimulation, and computational modeling with task-
optimized artificial neural networks.  

Methods 
Naturalistic looming fMRI task. Healthy adult 
participants (N = 37 [sex: 32 F, 5 M; gender: 29 F, 5 M, 
3 NB]; Mage = 27 yr, SDage = 8 yr) viewed a series of 
naturalistic videos concurrent with 3T fMRI using a 
whole-brain MB8 sequence with 2.7 mm isotropic 
voxels. In an event related design, participants viewed 
a total of 91 video clips (mean duration = 7.76 sec, SD 
= 5.0 sec). Videos varied in terms of object type (dogs, 
cats, frogs, spiders, food dishes) and motion (the 
presence or absence of a looming object). After 
scanning, participants viewed the clips and reported 
valence, arousal, and fear for each item. 

Encoding model specification and estimation. 
We trained voxel-wise encoding models to predict 
multivariate response patterns in the superior colliculus 
(defined anatomically using the Brainstem Navigator 
Atlas, García-Gomar et al., 2019). Visual features were 
defined using two task-optimized convolutional neural 
networks: a shallow convolutional network trained to 
detect imminent collision from patterns of optical flow 
(Zhou et al., 2022) that is known to predict human 
superior colliculus responses (Thieu et al., 2024) and a 
deep convolutional network for object recognition 
(AlexNet; Krizhevsky et al., 2012) that approximates 
transformations performed by the human ventral visual 
stream (Cichy et al., 2016; Eickenberg et al., 2017; 
Nonaka et al., 2021). We passed each video frame 
through the convolutional networks and extracted 
activations from the final layer of each network. 
Activations concatenated across the full duration of 
videos were used as predictors in multivariate encoding 
models to predict patterns of superior colliculus BOLD 
timeseries. Models were fit using partial least squares 
regression with 40 latent dimensions (to roughly equate 
model complexity). Generalization performance was 



estimated by computing the partial correlation between 
predicted and observed BOLD responses, adjusting for 
variance explained by the other model in a leave-one-
subject-out cross-validation.  

 Covariation between superior colliculus 
responses, emotional experience, and large-
scale brain networks. We tested whether superior 
colliculus responses were related to emotional 
experience by regressing self-report ratings on the 
average predicted superior colliculus response 
separately for looming- and object-related responses, 
estimating generalization using within subject split-half 
cross-validation. We estimated the separate 
contributions of looming- and object-related information 

by calculating the partial Spearman’s  between 
observed ratings and looming-predicted and object-
predicted ratings. Confidence intervals for these partial 
correlations were estimated via block bootstrapping, 
resampling observations grouped by subject. 

We estimated the covariation between object- and 
looming- related activity in the superior colliculus and 
the rest of the brain. This was accomplished by 
calculating pairwise correlations between model-
predicted superior colliculus time courses (averaged 
across superior colliculus voxels using data from held-
out subjects) and the BOLD time course of all voxels in 
the brain. Inference on these maps was performed 
using group t-tests with a false discovery rate threshold 
of q < .05 (Benjamini & Hochberg, 1995).  

Results 
Superior colliculus responses encoded looming (mean 
cross-validated r = .080, 95% CI = [.068, .093]; Figure 
1A) and object features (mean cross-validated r = .120, 
95% CI = [.103, .136]). Direct comparisons revealed the 
two models explained unique variance in superior 
colliculus responses (looming features: partial r = .027, 
95% CI = [.017, .037]; object features: partial r = .107, 
95% CI = [.091, .123]). Object features explained a 
greater portion of variance than the looming model 

across superior colliculus voxels (r = .039, Cohen’s d 
= .86). Multivariate decoding of encoding model 
responses showed that object stimulus categories 
could be classified both by object (5-way accuracy = 
43.7%, ppermuted < .001) and looming features (accuracy 
= 37.0%, ppermuted < .001). Regressing self-report 
measures on looming- and object-related superior 

colliculus responses revealed that each variable was 
independently associated with self-report (Table 1).  

 Model-based connectivity analysis showed that 
representations of looming and object features in the 
superior colliculus covaried with BOLD signals in 
multiple regions (Figure 1B). Consistent with structural 
connectivity in nonhuman animals (X. Liu et al., 2022), 
we found common looming- and object-related 
functional connectivity with right inferior frontal gyrus, 
dorsal parietal cortex, pulvinar, amygdala, 
inferotemporal cortex, and lateral geniculate nucleus. 
Connectivity with inferotemporal cortex (predominantly 
in fusiform gyrus) was more strongly associated with 
superior colliculus signals related to object features 
compared to looming features. 

Taken together, these results show that the 
superior colliculus encodes looming- and object-related 
information present in naturalistic videos, and that the 
superior colliculus participates in a distributed network 
of regions involved in detecting and responding to 
threats. These results are consistent with accounts 
suggesting that information from multiple cortical 
systems reaches the superior colliculus to flexibly yet 
rapidly coordinate behavior. More broadly, this work 
suggests the functional role of the superior colliculus 
may vary across species depending on the complexity 
of cortical contributions to midbrain processing. 

Table 1. Partial correlations (95% CI) between 
self-report and superior colliculus responses 

 Object Features Looming Features  

Valence .238 [.192, .292] .100 [.061, .138] 

Arousal .216 [.153, .301] .086 [.026, .147] 

Fear .224 [.172, .277] .116 [.061, .170] 

Figure 1. (A) Performance of superior colliculus 
encoding models estimated using leave-one-subject-
out cross-validation. Each point corresponds to one
subject; error bars reflect standard error of the mean. 
(B) Brain maps depicting the covariance between 
superior colliculus responses and BOLD responses.
across the brain. 
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