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Abstract
Understanding how the visual system responds to nat-
ural scenes remains a central challenge in vision sci-
ence. Research shows that the ventral visual cortex
(VVC) encodes objects, textures, and the spatial and se-
mantic relationships between them—forming a structured
scene representation, akin to a scene graph. However,
inferring such representations from images in an inter-
pretable, image-computable way is still an open problem.
We propose glimpse prediction—predicting the upcom-
ing visual input given an eye movement (saccadic ef-
ference copy)—as a training objective that encourages
the emergence of representations with graph properties
in artificial neural networks. A recurrent neural network
trained with this objective learns spatial covariance be-
tween glimpses, across scenes (in-weight learning) and
in novel scenes (in-context learning). Importantly, the
model’s internal representations align closely with VVC
responses to natural scenes (Natural Scenes Dataset),
despite never observing the full scene or receiving ex-
plicit semantic labels. Thus, glimpse prediction offers
a principled route to building graph-oriented representa-
tions mirroring those in the human ventral visual stream.
Combining interpretable concepts from cognitive neuro-
science and image-computable neuroconnectionist mod-
els, this work advances a comprehensive understanding
of the visual system’s response to natural scenes.
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Motivation
How does the visual ventral cortex (VVC) respond to natu-
ral scenes? VVC represents scene chunks such as object
parts, objects, textures, surfaces (DiCarlo, Zoccolan, & Rust,
2012; Grill-Spector & Weiner, 2014). It also represents rela-
tionships between these chunks (Kaiser, Quek, Cichy, & Pee-
len, 2019), both spatial (e.g. an egg appears above an egg
cup) and semantic (e.g. toilet paper appears next to a toilet
seat rather than a dishwasher). These chunks and their re-
lationships, constituting a scene graph, comprehensively de-
scribe a scene as a combination of its parts (Johnson, Gupta,
& Fei-Fei, 2018; Vo, 2021). Although we have a good un-
derstanding of the components VVC represents, building an
interpretable, image-computable model that can predict VVC
responses to natural scenes is challenging.

In building image-computable models that can predict VVC
responses, the most successful approaches have taken the
form of training artificial neural networks on large-scale image
and text datasets (Doerig et al., 2022; Conwell, Prince, Kay,
Alvarez, & Konkle, 2024). However, in those approaches it
is unclear what the format of the internal representation is -
whether it captures graph-like structure. To circumvent this is-
sue of interpretability, we build a ‘Glimpse Predictor’ model to
explicitly encourage a vector representation with graph prop-
erties, to predict ventral stream responses to natural scenes.

We show that our model learns to encode spatial and seman-
tic relationships between scene chunks, and its internal rep-
resentation of the scene aligns with VVC responses to natural
scenes.

Setup
The Glimpse Predictor (GP) model

To encode graph-like structure, a model needs to represent
scene chunks and their relationships.

Human fixation traces were used to define scene chunks -
meaningful glimpses that need to be integrated for scene un-
derstanding (Henderson, Hayes, Peacock, & Rehrig, 2019).
We modeled these traces with DeepGaze3 (DG3; Kümmerer,
Bethge, and Wallis (2022)). These glimpses were represented
by the AvgPool activations of ResNet50 pretrained on Ima-
genet (RN50; v1, Torchvision).

To encourage a graph-oriented representation, we turned
to sequence prediction. Prediction encourages networks to
learn the structure of the generating function (Elman, 1990;
Radford et al., 2019). Thus, predicting the next glimpse, given
the upcoming saccade, would encourage the model to infer
the scene graph that the fixations implicitly traverse.

As shown in Figure 1B, in GP, projections of the current
glimpse representation and a cartesian saccadic copy are in-
puts to a 3-layer LSTM, a projection from which is trained to
predict the next glimpse representation, with a contrastive ob-
jective: the cosine similarity of the prediction is expected to
be higher to the next glimpse and lower to the other glimpses
from the current scene and from other scenes.

Datasets

Images of scenes from the MS-COCO dataset (Lin et al.,
2014) were used for training and testing the GP: all COCO
images from the 2017 train/val splits that were not the special-
515 images shown to all participants, with 3 repeats, in the 7T
fMRI Natural Scenes Dataset (NSD; Allen et al. (2022)) were
split into train (∼ 121k images) and val (∼ 2k images). The
special-515 served as the test set which is used in analyzing
the GP. 91px crops, centered on the DG3 fixations, from the
COCO images scaled to 256px (smaller axis), were taken as
glimpses (corresponding to ∼ 3DVA in NSD). If a portion of
the glimpse fell outside the scene, that portion was padded
black. 10 fixation traces, with 7 fixations each, starting at the
center (Figure 1A), were sampled for all the images.

From NSD, GLM beta weights were averaged, across the
3 repetitions, for each of the special-515 images and the 8
participants. We extracted bilateral visual ventral cortex (VVC)
responses to these 515 scenes via the ventral stream mask in
the NSD ‘streams’ ROI definitions (RH shown in Figure 1F).

Analysis
As seen in Figure 1C, post-training, the GP predictions were
more similar to the target glimpse representations than to
the other glimpses’ representations, suggesting that the GP
learned to predict the next glimpse. Moreover, the contrastive



Figure 1: The Glimpse Predictor setup and analysis. In (B), Gn
t refers to the tth glimpse from scene n, ln

t refers to the location of
that glimpse, and f (G) refers to the ResNet50 glimpse representations. 95% confidence intervals of the means are shown.

loss decreased with increasing glimpses, suggesting the exis-
tence of integrative processes in the GP.

One indication that glimpses are being integrated into a
graph-oriented representation, is the model’s ability to predict
novel re-fixations. We sampled 1000 fixation traces, taking the
first 4 fixations (where no re-fixations happened; min. saccade
length ∼ 30px), from the test set traces. For each fixation, we
sampled the glimpse representation randomly from the set of
all glimpses from the test set. Then we simulated re-fixations
from the 4th fixation to all the 4 fixations. As seen in Figure 1D,
the GP predictions aligned with the glimpse representations
corresponding to the locations suggested by the re-fixations,
suggesting that the GP indeed utilizes a latent graph to inte-
grate across glimpses. Critically, the weights do not change
while learning these arbitrary scene graphs, akin to in-context
learning (Olsson et al., 2022).

While graphs can be learned in-context, what informa-
tion about spatial covariance, specifically object-scene covari-
ance, across scenes did the GP learn with its weights? We
took scenes from the SCEGRAM dataset (Öhlschläger & Võ,
2017), which contain semantic and syntactic (in)consistencies
at the object level (e.g. a cup or a toilet paper roll in the dish-
washer rack [CON/SEM], the cup in the dishwasher rack or on
the dishwasher door [CON/SYN]; Figure 1E). With similar pre-
processing as the COCO images, we took the central glimpse
(without the objects of interest) and simulated saccades to the
location of the object in each of the CON/SEM/SYN condi-
tions, for each of the 61 scenes. We compared the GP predic-
tions to RN50 representations of the corresponding isolated

objects in upright position (to exclude background and orien-
tation contributions). As seen in Figure 1E, the GP predictions
were closer to the semantically-congruent object and matched
the congruent object better in its syntactically-appropriate po-
sition, suggesting the GP learned spatial object-scene covari-
ance through its experience with the COCO training set.

While the GP contains information about spatial covari-
ance structure of scene chunks (including objects) and can
learn such structure in new scenes, do its internal activa-
tions resemble ventral stream responses? For each of 515
test set images, we took the activations of the final LSTM
layer for each glimpse during one fixation trace and extracted
representational dissimilarity matrices (RDMs; correlation dis-
tance) per glimpse. We compared these RDMs to RDMs con-
structed from ventral visual cortex (VVC) responses. As seen
in Figure 1F, the GP-VVC correlation increased with added
glimpses and peaked at 0.53, which surpasses strong models
of VVC response to natural scenes - ResNet50 (full scene rep-
resentation), DINO (Oquab et al., 2023), and CLIP (Radford
et al., 2021) - and is comparable to a state-of-the-art model,
MPNet-BLT (Doerig et al., 2022). This result suggests a
strong alignment between the graph-oriented GP represen-
tations and VVC responses to natural scenes.

Conclusion
Glimpse prediction is a powerful approach to build graph-
oriented representations in artificial neural networks, aligning
with ventral stream responses to natural scenes, rivaling state-
of-the-art models, despite never observing the full scene or
receiving any explicit semantic supervision.
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