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Abstract 
Human behavior is guided by both goal-directed and 
habitual systems. While reinforcement learning (RL) 
models have captured these influences using choice 
data, integrating RL with sequential sampling 
models like the drift-diffusion model (DDM) enables 
modeling of both choices and response times (RTs). 
In this study, we tested whether value differences 
modulate the DDM drift rate and whether prior 
choice frequency affects response bias 
simultaneously. Using data of 213 participants in the 
Reward Pairs Task - an instrumental learning 
paradigm that independently manipulates stimulus 
value and choice frequency - we applied hierarchical 
DDM modeling with collapsing boundaries. Results 
showed that the best-fitting model captured both 
value-based and habit-based influences: drift rate 
scaled with value differences, and response bias 
reflected differences in choice frequencies. 
Posterior predictive checks confirmed alignment 
with observed behavior. These findings support a 
dual-process view of decision-making, showing that 
goal-directed and habitual factors influence choice 
and decision speed via distinct mechanisms. 
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Introduction 
Human behavior is believed to be shaped by two distinct 
but often interacting systems: a goal-directed system, 
which selects actions based on the value of expected 
outcomes, and a habitual system, which elicits 
responses based purely on stimuli-response 
associations (Daw, Niv, & Dayan, 2005; Dolan & Dayan, 
2013; Miller, Shenhav, & Ludvig, 2019; Huys & Seriès, 
2022). Computational models arising from the 
reinforcement learning (RL) framework have been widely 
used to explain both habitual and  goal-directed 
behaviors (Daw et al., 2005; Miller, Shenhav, & Ludvig, 
2019). 

Such models typically focus on predicting choice 
data, but response times (RTs) offer valuable additional 
insights (Konovalov & Krajbich, 2019). Integrating RL 
with sequential sampling models like the drift-diffusion 
model (DDM) enables joint modeling of choices and RTs, 
with drift rate reflecting value differences (Pedersen et 

al., 2017; Fontanesi et al., 2019; Miletić et al., 2020). 
Fewer studies have explored how habitual learning fits 
within the sequential sampling framework. Research in 
perceptual decision-making suggests that choice 
frequency, whether instructed or learned, can bias the 
starting point of evidence accumulation toward more 
frequently chosen options (Leite & Ratcliff, 2011; Mulder 
et al., 2012; but see Urai et al., 2019). Recent theoretical 
work (Zhang et al., 2024) proposes that value 
differences modulate drift rate while habit strength 
affects response bias - though these assumptions 
remain largely untested with behavioral data. 

The goal of the present study was to validate the 
difference-based assumptions using behavioral data 
from the Reward Pairs Task (Nebe, Kretzschmar, Brandt, 
& Tobler, 2024) - a paradigm that independently 
manipulates stimulus value for goal-directed action 
learning and choice frequency for habit formation during 
training. Previous results suggest that both higher 
reward value and greater prior choice frequency facilitate 
faster responding in the Reward Pairs Task (Nebe et al., 
2024). We applied hierarchical DDMs (HDDM; Wiecki, 
Sofer, & Frank., 2013) to examine whether value 
differences modulate the drift rate, and whether habit 
strength differences modulate the response bias. Across 
multiple model specifications, our findings supported this 
dual influence on decision dynamics. 

Methods 

Reward Pairs Task. The task (Nebe et al., 2024) is an 
instrumental learning task designed to independently 
manipulate reward value and choice frequency. 
Participants repeatedly choose between pairs of 
geometric stimuli with fixed reward values (1/3/5/7/9 
points), learning these values through feedback across 
five training sessions. Within each of the intermediate 
reward levels (3, 5, 7), one stimulus was more often 
paired with lower-(higher-)value options, increasing 
(decreasing) its choice frequency during training (Figure 
1). Each response was limited to 800ms. A test session 
followed after five days of training, freely pairing each 
stimulus with each other and omitting feedback to 
prevent further learning. Importantly, some test session 
choices for the first time concerned equal-reward stimuli 
which differed only in the past choice history, thus 
controlling for value to assess the impact of frequency 
on behavior. 



Dataset. Data of 213 participants (Nebe et al., 2024) 
included on average 133 test trials, 35 of which with 
equal reward. Choice frequency was operationalized as 
the proportion of stimulus choice over all choices made 
during training. Only test data were analyzed to isolate 
the influence of prior learning without ongoing 
reinforcement.  
HDDM. Due to the time pressure in the task, we utilized 
DDMs with linearly collapsing boundaries. In the models 
we fitted, drift rate (v) and response bias (z) were 
regressed on value difference (indicated as val) or 
choice frequency difference (indicated as freq) in various 
combinations (see Table 1). We indicated standard DDM 
with linearly collapsing bounds as a baseline model. The 
upper boundary corresponded to left choices, the lower 
to right. We used default non-informative priors in the 
HDDM package. For the group-only model fitting, we 
sampled 4 chains of 13,500 samples (3,500 burn-in). For 
hierarchical model fitting (i.e., each parameter is 
estimated also for individual participants), we sampled 4 
chains of 75,000 samples (25,000 burn-in).  

 
Figure 1: Choice frequency manipulation during 

training in the Reward Pairs Task 

Results 
We fitted only group parameters for all combinations of 
drift rate and response bias with difference-based 
assumptions. Based on the Deviance Information 
Criterion (DIC; see Table 1), the second best model 
(v_val) assumes that drift rate is a function of the scaled 
value difference (as in  Miletić et al., 2020). However, the 
best model (v_val_z_freq) additionally assumed that 
response bias reflects the difference in choice 
frequencies during training. When fitting the two best 
models hierarchically, the v_val_z_freq model 
(DIC=-38,059) was still better than the v_val model 
(DIC=-37,204). All models converged well (R_hat < 1.01) 
and posterior predictive checks showed closely matched 
observed choices and RTs in the Reward Pairs Task 
(Figure 2 for an example). Slope coefficients for both 
v_val and v_val_z_freq models were positive, indicating 

higher drift rate with increasing value difference and shift 
of the starting point toward the option chosen more often 
during training.  

Table 1. Results of the group-only model fitting. 

Model DIC 

v_val_z_freq -29,081 

v_val -28,562 

v_freq_z_val -23,250 

z_val -21,667 

v_freq -18,520 

z_freq -17,272 

Baseline (left VS right) -14,705 

 

 
Figure 2: Posterior predictions of the hierarchical 
v_val_z_freq model (positive RT if left stimulus 
chosen, negative RT if right stimulus chosen,).  

Conclusion 
We provide empirical support for dissociable 
mechanisms underlying value-based actions and habits. 
Specifically, drift rate increased with value differences, 
while response bias increased with choice frequency 
differences. These findings guide future modeling of 
goal-directed and habitual behavior using both choice 
and response time data. They also suggest that habit 
and goal-directed systems can interact within a single 
decision process via distinct parameters (i.e., drift rate 
and response bias), rather than functioning as separate 
decision-making modes. 
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