
Connectome-Constrained Unsupervised Learning Reveals Emergent Visual
Representations in the Drosophila Optic Lobe

Keisuke Toyoda (toyoda-keisuke527@g.ecc.u-tokyo.ac.jp)
Department of Systems Innovation, School of Engineering, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Naoya Nishiura (naoya-nishiura@g.ecc.u-tokyo.ac.jp)
Department of Systems Innovation, School of Engineering, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Rintaro Kai (kai-rintaro944@g.ecc.u-tokyo.ac.jp)
Department of Systems Innovation, School of Engineering, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Masataka Watanabe (watanabe@sys.t.u-tokyo.ac.jp)
Department of Systems Innovation, School of Engineering, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Abstract
Understanding how brain structure enables visual pro-
cessing is crucial. While Drosophila offers a complete
connectome, computational models often use biologi-
cally implausible supervised signals. We address this
by building a large-scale autoencoder constrained by
the complete Drosophila right optic lobe connectome
(∼45k neurons, FlyWire dataset). Using photoreceptors
(R1-R6) as both input and output, the model incorpo-
rates anatomical feedforward and feedback loops and
was trained unsupervised on naturalistic video stimuli
to minimize reconstruction error. Temporal offsets were
included to probe predictive capacity. The autoencoder
accurately reconstructed photoreceptor inputs with high
fidelity. Deeper layer neurons (medulla, lobula) showed
moderate, stable activity under sustained input, consis-
tent with efficient engagement and functional recurrent
loops. Temporal offsets improved short-term prediction,
indicating learned input dynamics. We demonstrate that
a connectome-based autoencoder can learn meaningful
visual representations via biologically plausible unsuper-
vised learning. This highlights how anatomical struc-
ture shapes emergent function and provides a digital
twin framework for studying visual processing beyond
task-specific supervised approaches, suggesting com-
plex representations can arise from self-organization on
detailed neural circuits.
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Introduction
The optic lobe functions as the primary visual processing cen-
ter in Drosophila melanogaster, executing critical functions
such as motion detection (Borst & Groschner, 2023; Borst,
Haag, & Mauss, 2020), which relies on precisely wired neu-
ral circuits. Recent advances in connectomics have yielded

nearly complete synaptic maps of the fly brain, including the
visual system (Scheffer et al., 2020; Lappalainen et al., 2024;
Dorkenwald et al., 2024), opening unprecedented opportu-
nities for detailed circuit analysis and computational model-
ing. A notable recent study utilized a connectome-constrained
neural network to replicate the motion detection properties
characteristic of T4 and T5 neurons (Lappalainen et al., 2024).
However, this model relied on supervised learning employing
vector-based teaching signals (e.g., optical flow), which rep-
resent information not explicitly available to the biological sys-
tem.

In contrast, we leverage the comprehensive synaptic con-
nectivity data from the entire right optic lobe, obtained via the
FlyWire project (Dorkenwald et al., 2022, 2024), to construct a
large-scale autoencoder model. Crucially, the model uses the
visual input itself as the teaching signal, mirroring potential
self-supervised learning mechanisms in biology and incorpo-
rating known feedback pathways (Hu, Hillion, Gu, Hardie, &
Juusola, 2015). Our primary objective is to develop a ”digi-
tal twin” of the Drosophila optic lobe that operates under bi-
ologically plausible training conditions, thereby investigating
how visual information is processed and represented within
the constraints of its anatomical structure.

Methods

We constructed the neural network model based on a synap-
tic adjacency matrix derived from the complete right optic lobe
connectome provided by the FlyWire dataset (Dorkenwald et
al., 2022, 2024). This resulted in a network comprising ap-
proximately 45,000 neuronal nodes interconnected by over
4.5 million synaptic edges, representing the known synaptic
partners and strengths. The model was configured as an au-
toencoder, where the input layer consisted of photoreceptor
neurons (R1–R6), and the output layer aimed to reconstruct
the activity of these same photoreceptors. The network archi-
tecture between the input and output layers strictly adhered to



Figure 1: Schematic diagram of the Recurrent Neural Network
(RNN) architecture for the autoencoder model. The left side
shows the general loop structure of the RNN, and the right
side shows its unfolding over time. The input layer (R1-6) re-
ceives movie frames, which are processed through the RNN
(state h(t), weights W ) to generate reconstructed signals at
the output layer (phantom R1-6). The time interval shown is
0.05 s.

the connectome data, preserving both feedforward process-
ing pathways and recurrent/feedback connections, including
those known to modulate photoreceptor sensitivity (Hu et al.,
2015).

The model was trained using sequences of naturalistic
visual stimuli (e.g., video clips). During training, synaptic
weights were iteratively adjusted using an optimization algo-
rithm (e.g., gradient descent) to minimize the mean squared
reconstruction error between the original photoreceptor sig-
nals and the signals reconstructed by the network’s output
layer. To assess the model’s predictive capabilities regarding
temporal dynamics, each training iteration incorporated slight
temporal offsets between the input stimulus presented and the
target reconstruction signal.

Following training, the activity patterns of neurons through-
out the network were analyzed. Neurons were categorized
based on their topological distance (shortest synaptic path
length) from the input photoreceptors, allowing for the exami-
nation of signal propagation and transformation through suc-
cessive processing layers, analogous to biological analyses
(Borst & Groschner, 2023).

Results
Upon completion of the training phase, the connectome-based
autoencoder demonstrated high fidelity in reconstructing the
initial photoreceptor input signals. This visual reconstruction
quality is illustrated in Figure 2, which compares the input pho-
toreceptor activation (Fig. 2a) with the corresponding recon-
structed output activation (Fig. 2b) for an example stimulus
frame. Quantitatively, the model achieved a low mean squared
error across a diverse range of visual contexts presented dur-
ing testing.

Analysis of neuronal activity revealed that neurons situated
beyond the superficial lamina layers (i.e., in deeper regions
like the medulla and lobula) exhibited moderate levels of ac-
tivation. This indicates that while these deeper circuits were
engaged in the reconstruction task, they were not driven to

maximal activity levels, potentially reflecting efficient coding
strategies.

When the network was presented with prolonged, stable
visual stimulation, the activation patterns across many neu-
ronal populations tended to stabilize after an initial transient
response. This stabilization suggests the functional engage-
ment of recurrent loops inherent in the optic lobe’s connec-
tome, which may serve to dampen excessive fluctuations or
adapt neuronal responses, consistent with biological reports
on feedback mechanisms modulating photoreceptor gain and
sensitivity (Hu et al., 2015).

Furthermore, performance analyses incorporating minor
temporal offsets during training showed improved predictive
accuracy. This finding hints that the network successfully
captured not only static spatial features but also short-term
temporal correlations present within the natural visual input
streams.

(a) Input frame (photoreceptor
activation)

(b) Reconstructed output (phan-
tom photoreceptor activation)

Figure 2: Visual comparison of model input and reconstructed
output for an example stimulus frame. (a) Input photoreceptor
activation visualized on the stimulus. (b) Corresponding re-
constructed activation (’phantom R1-6’) generated by the au-
toencoder. The similarity highlights the model’s high recon-
struction fidelity.

Discussion
Our findings demonstrate that a large-scale autoencoder
model, constrained by the complete anatomical connectivity
of the Drosophila right optic lobe (Dorkenwald et al., 2022,
2024), can effectively learn to reconstruct its visual inputs us-
ing only the sensory information itself as a teaching signal.
The high visual fidelity achieved in this reconstruction (exem-
plified in Figure 2) strongly supports this conclusion. This un-
supervised learning paradigm, which incorporates biologically
known feedback loops (Hu et al., 2015), supports the hypoth-
esis that significant aspects of visual processing can emerge
through self-organization guided by network structure and in-
put statistics. By preserving the detailed anatomical wiring
patterns derived from connectomics (Scheffer et al., 2020;
Dorkenwald et al., 2024), the model provides a platform to
investigate how structural constraints inherently shape func-
tional computations.

Compared to previous modeling approaches that focused
on specific computations like local motion detection (Ammer,
Leonhardt, Bahl, Egelhaaf, & Borst, 2015) or relied on super-
vised learning paradigms with potentially biologically implau-



sible teaching signals (Lappalainen et al., 2024), our unsuper-
vised autoencoder method allows for the exploration of emer-
gent neural coding properties without imposing task-specific
objectives.

Although neurons in deeper layers displayed only moderate
activity levels during the reconstruction task, their consistent
engagement suggests a role in hierarchical processing, po-
tentially refining the representation or contributing to the pre-
diction of visual inputs (Borst & Groschner, 2023).

Future investigations could involve dissecting the activity
within specific, functionally characterized subnetworks (e.g.,
those implicated in contrast gain control or specific motion
pathways (Scheffer et al., 2020; Hu et al., 2015)) within the
trained autoencoder framework. This could clarify how un-
supervised learning shapes representations relevant to these
tasks and how feedback mechanisms contribute to refining vi-
sual perception under varying conditions.
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