
A Two-Dimensional Space of Linguistic Representations  1 

Shared Across Individuals 2 

 3 

Greta Tuckute (gretatu@mit.edu) 4 

Department of Brain and Cognitive Sciences & McGovern Institute for Brain Research, Massachusetts 5 

Institute of Technology, Cambridge, MA 02139  6 

 7 

Elizabeth J. Lee (jelizlee@mit.edu) 8 

Department of Brain and Cognitive Sciences & McGovern Institute for Brain Research, Massachusetts 9 

Institute of Technology, Cambridge, MA 02139  10 

 11 

Yongtian Ou (ou000036@umn.edu) 12 

Center for Magnetic Resonance Imaging, Department of Radiology, University of Minnesota, Minneapolis, 13 

MN 55455  14 

 15 

Evelina Fedorenko (evelina9@mit.edu) 16 

Department of Brain and Cognitive Sciences & McGovern Institute for Brain Research, Massachusetts 17 

Institute of Technology, Cambridge, MA 02139  18 

Program in Speech and Hearing Bioscience and Technology, Division of Medical Sciences, Harvard 19 

University, Boston, MA 02114 20 

 21 

Kendrick Kay (kay@umn.edu) 22 

Center for Magnetic Resonance Imaging, Department of Radiology, University of Minnesota, Minneapolis, 23 

MN 55455  24 

  25 



Abstract 26 

Humans learn and use language in diverse ways, yet 27 

all typically developing individuals acquire at least 28 

one language and use it to communicate complex 29 

ideas. This fundamental ability raises a key 30 

question: Which dimensions of language 31 

processing are shared across brains, and how are 32 

these dimensions organized in the human cortex? 33 

To address these questions, we collected ultra-high-34 

field (7T) fMRI data while eight participants listened 35 

to 200 linguistically diverse sentences. To identify 36 

the main components of variance in the sentence-37 

evoked brain responses, we performed data 38 

decomposition and systematically tested which 39 

components generalize across individuals. Only two 40 

shared components emerged robustly, together 41 

accounting for about 32% of the explainable 42 

variance. Analysis of linguistic feature preferences 43 

showed that the first component corresponds to 44 

processing difficulty, and the second—to meaning 45 

abstractness. Both components are spatially 46 

distributed across frontal and temporal areas 47 

associated with language processing but, 48 

surprisingly, also extended into the ventral visual 49 

cortex. These findings reveal a low-dimensional, 50 

spatially structured representational basis for 51 

language processing shared across humans. 52 
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Introduction 56 

Language enables the transfer of complex ideas across 57 

minds—an ability that has laid a critical foundation for 58 

human culture. A set of left-lateralized frontal and 59 

temporal brain areas—the “language network”—60 

supports language understanding and production, 61 

across modalities (spoken, written, and signed; 62 

MacSweeney et al. 2002; Deniz et al. 2019; Hu et al. 63 

2022) and across typologically diverse languages 64 

(Malik-Moraleda, Ayyash et al. 2022). Although the 65 

brain areas that support language are well-established, 66 

their internal organization—what dimensions structure 67 

their responses and how—remains poorly understood. 68 

All frontal and temporal language areas show a similar 69 

response profile: they are strongly engaged by 70 

structured and meaningful language in controlled 71 

paradigms (Rodd et al., 2010; Fedorenko et al., 2020) 72 

and track linguistic complexity during naturalistic 73 

comprehension (Shain et al. 2020; Wehbe et al. 74 

2021). However, some structure may exist within this 75 

network of areas that does not correspond to regional 76 

boundaries (e.g., Jain et al., 2020; Regev, Casto et 77 

al., 2024). In this study, we used a data-driven 78 

structure-discovery approach to explain each voxel’s 79 

response to diverse sentences as a weighted sum of 80 

a smaller number of components. Our goal is to 81 

identify the organizing dimensions of language 82 

representations that are shared across individuals 83 

and to characterize how these dimensions are 84 

distributed across the brain. 85 

Methods 86 

We scanned eight proficient English speakers 87 

(monolinguals and multilinguals) with 7T fMRI while 88 

they listened to 200 spoken sentences (2s each), 89 

repeated three times in pseudorandomized order. 90 

Sentence-level BOLD responses were estimated 91 

using GLMsingle (Prince et al., 2022). We extracted 92 

reliable voxel responses from five large anatomical 93 

parcels covering the frontal and temporal cortex 94 

implicated in language processing (Lipkin et al., 95 

2022), and applied singular value decomposition to 96 

the mean-subtracted voxel responses concatenated 97 

across participants. This procedure yields the 98 

“Sentence PCs”, where each Sentence PC denotes 99 

how much each sentence drives variance along a 100 

principal dimension of voxel activity. To identify 101 

Sentence PCs that generalize across individuals, we 102 

used a leave-one-participant-out framework: we 103 

trained ordinary least squares (OLS) models using 104 

Sentence PCs derived from seven participants to 105 

predict voxel responses in the held-out participant. 106 

We characterized the resulting Sentence PCs using a 107 

set of 12 linguistic/semantic properties—combining 108 

properties from prior work (Tuckute et al. 2024) with 109 

new experiments that directly probe processing 110 

difficulty and abstractness of sentence meanings. 111 

Finally, we visualized the Sentence PC weights on the 112 

cortical surface. 113 



Results 114 

How many distinct components of language are 115 

shared across individuals and what characterizes 116 

them? To search for shared dimensions of language 117 

representations, we identified the principal 118 

components (“Sentence PCs”) of sentence-evoked 119 

brain responses (Fig. 1A) and tested their 120 

generalizability across individuals. We found that 121 

model performance plateaued at two Sentence PCs 122 

(Fig. 1B); additional components failed to improve 123 

prediction accuracy in held-out participants, indicating 124 

that PCs beyond two reflect inter-individual neural 125 

variability. These two PCs accounted for about 32% 126 

of sentence-evoked variance.  127 

 Sentence PC 1 was strongly correlated with 128 

measures of processing difficulty, such as reading 129 

times (Boyce et al., 2020), surprisal, and frequency–130 

altogether capturing a dimension that spans “Easy to 131 

process” to “Hard to process” (Fig. 1C). Sentence PC 132 

2 correlated most strongly with concreteness and 133 

imageability (how much a sentence is tied to 134 

perceptual, including visual experience), capturing a 135 

dimension from "Concrete" to "Abstract” sentence 136 

meanings. 137 

How are the components spatially organized? To 138 

understand how the two components are distributed 139 

across the brain and whether any systematic patterns 140 

exist across individuals, we visualized the PC weights 141 

on the cortical surface, averaging across significantly 142 

predicted voxels in all eight participants (Fig. 1D). 143 

Both PCs were present throughout the left fronto-144 

temporal language network (white demarcations), 145 

with these areas showing an overall preference for 146 

abstract/hard-to-process sentences. Quantifications 147 

of these response profiles revealed that PC2—the 148 

meaning abstractness component—was more 149 

prominently present in the temporal areas compared 150 

to the frontal areas (p<.05). Surprisingly, we also 151 

observed robust prediction in the left ventral visual 152 

cortex, typically associated with high-level vision. 153 

These voxels were tuned to visualizable, “concrete” 154 

sentences, potentially reflecting spontaneous visual 155 

imagery or multimodal semantic processing distinct 156 

from the computations implemented in the frontal and 157 

temporal language areas. 158 

Conclusion 159 

We identify two principal, cross-individual dimensions 160 

of language representations in the brain: processing 161 

difficulty and meaning abstractness. These findings 162 

lay the foundation for developing topographical 163 

models of the neural architecture of language. 164 
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