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Abstract
Cause-effect learning is a core competency of sufficiently
intelligent animals, and has been invoked to try to ex-
plain anomalous results (in both behavior and phasic
dopamine activity) in certain associative learning exper-
iments. But it is unclear how to mathematically formal-
ize the problem of cause-effect learning, especially in a
way that accommodates conditional independence struc-
ture, priors, and temporal structure (i.e., event order and
proximity in time). We propose a novel Bayesian frame-
work for modeling cause-effect learning which incorpo-
rates each of those aspects, yet remains relatively simple
and has few free parameters. We study salient mathe-
matical properties of our framework, including how infer-
ence is affected by topological structure in the assumed
causal graph. Finally, we apply our framework to explain
associative learning experiments, and find that it parsi-
moniously accounts for many otherwise puzzling obser-
vations. For example, our model explains the observation
that cue-reward associations can be weakened by provid-
ing free reward at other times (contingency degradation),
but only if the free reward is uncued. It also explains the
observation that associations can be learned in fewer tri-
als if each trial is longer. Our results suggest a new way
to think about cause-effect learning, and support the idea
that animals exploit nontrivial (causal) state representa-
tions even in simple associative learning settings.

Introduction
Cause-effect learning is a fundamental feature of intelligence
(Hume, 1748; Gopnik & Schulz, 2007; Penn & Povinelli,
2007). It generically involves observing temporal sequences
of events, and then making inferences about causal relation-
ships based on the extent to which one event reliably pre-
dicts another, prior beliefs about which kinds of events are
likely to be causally related, and the temporal ordering and
proximity of events. Existing mathematical models of cause-
effect learning are largely based on structural causal models
(SCMs) (Pearl, 2009), and naturally capture conditional inde-
pendence structure and the influence of prior beliefs (Griffiths
& Tenenbaum, 2009), but generally fail to model temporal in-
formation, which is known to play a dominant role in human
cause-effect learning (Lagnado & Sloman, 2006; Bramley,
Gerstenberg, Mayrhofer, & Lagnado, 2018). Our first goal is
to construct a theory of (Bayesian) cause-effect learning that
addresses this issue. Our second goal is to leverage this ac-
count to study puzzling associative learning experiments in
which cause-effect learning has been implicated (Jeong et al.,
2022), with contingency degradation experiments—in which a

cue-reward association is weakened by providing a free re-
ward at another time, but only if that reward is uncued—being
a paradigmatic example (Garr et al., 2024; Qian et al., 2024).

Framework for Bayesian causal inference
We introduce a framework for modeling causal relationships in
event sequences (Fig. 1a), motivated by three insights. First,
if A causes B, the continued presence of A may not be neces-
sary for B to happen; cues can ‘cause’ reward even with cue-
reward delays in trace conditioning experiments. Second, one
cause often produces only one effect (e.g., one reward). Third,
effects sometimes fail to follow their causes (e.g., probabilistic
rewards). These considerations motivate modeling causality
via latent (unobservable) ‘causal power’ variables, which are
created and destroyed in discrete amounts. For example, one
can imagine a cue producing one unit of causal power, which
is then ‘used up’ to produce reward (Fig. 1b). Our full genera-
tive model allows events to occur spontaneously and/or as ef-
fects of some previous cause, and for effects to sometimes fail
to follow their causes (Fig. 1c). We view learners as perform-
ing Bayesian inference over possible causal structures (Fig.
1d); a cue-reward association is considered learned if a ‘cue
causes reward’ model is likelier than an ‘independent’ model.

Explaining associative learning experiments
The number of trials required to make an association in simple
cue-reward conditioning experiments depends mainly on the
ratio of the cue-reward interval and intertrial interval (Gallistel
& Gibbon, 2000), which is not consistent with naive tempo-
ral difference learning accounts (Gershman, 2024), but is a
generic prediction of our theory (Fig. 2a-b). Our theory is con-
sistent with the related observation (Burke et al., 2024) that
animals learn in fewer trials if each trial is longer (Fig. 2c).

As usual, we identify dopamine with prediction errors, which
the causal model affects since it defines ‘state’. Our theory
predicts that possible causes ‘compete’ to explain their effects.
For example, if cue 1 and cue 2 are both present and cause
reward, the likelihood accounts for both possibilities (Fig. 2d).
This fact explains contingency degradation: the animal’s best
hypothesis is that reward can both spontaneously occur and
be caused by the cue, which devalues the cue, since it may
not be responsible for every reward that directly follows it (Fig.
2e). Cuing the second reward removes this ambiguity, and
hence the effect (Fig. 2f). Our model shares features with
previous attempts to explain contingency degradation, like in-
voking cause-effect learning (Jeong et al., 2022), and assum-
ing animals exploit a nontrivial model of state transitions (Qian
et al., 2024), but substantially generalizes these attempts and
grounds them in normative (Bayesian) principles.
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Figure 1: Novel generative model for causality. a. Example event sequence and relevant questions for learner. Events are
characterized by a type (here: A or B) and time stamp. b. Samples from two generative models: one where A and B are
independent, and one where A causes B. c. Xi denotes event i and Zi denotes the associated causal power variable. Our
generative model allows three types of phenomena: events can occur spontaneously, events can be caused by other events,
and causal power can decay. d. Two types of inference: parameter and structure inference. The former is required for the latter.
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Figure 2: Explaining anomalous associative learning experiments. tRC: cue-reward delay. tIT I : intertrial interval. a. Evidence
(causal vs independent model log-likelihood difference ∆) in a cue-reward conditioning experiment as a function of # trials. b.
Number of trials required for model selection given two different priors ∆0. c. Elapsed time until selection. d. When two cues can
cause reward and both are present, likelihood involves sum of terms representing each possibility. e. If tIT I is sufficiently short,
free rewards greatly devalue a previously learned cue. f. Without causal ambiguity, there is no contingency degradation effect.
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